课时作业(十四)变量间的相关关系A组基础巩固1.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1),对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断()图(1)图(2)A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:由题图1知,散点图在从左上角到右下角的带状区域内,则变量x与y负相关;由题图2知,散点图在从左下角到右上角的带状区域内,则变量u与v正相关.故选C.答案:C2.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A.y=-10x+200B.y=10x+200C.y=-10x-200D.y=10x-200解析:由y与x负相关,排除B,D,而C中当x>0时,y=-10x-200<0不符合题意,故选A.答案:A3.工人月工资y(元)依劳动生产率x(万元)变化的回归直线方程为y=50+800x,下列判断正确的是()A.劳动生产率为1000元时,工资为130元B.劳动生产率提高1000元时,工资平均提高80元C.劳动生产率提高1000元时,工资平均提高130元D.当月工资为210元时,劳动生产率为2000元解析:由线性回归方程得到的值是估计值,不是准确值,故选B.答案:B4.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元解析:样本中心点是(3.5,42),a=-b,则a=-b=42-9.4×3.5=9.1,所以回归直线方程是y=9.4x+9.1,把x=6代入得y=65.5,故选B.答案:B5.两个相关变量满足如下关系:x10152025301y10031005101010111014两变量的回归直线方程为()A.y=0.56x+997.4B.y=0.63x-231.2C.y=50.2x+501.4D.y=60.4x+400.7解析:=(10+15+20+25+30)=20,=(1003+1005+1010+1011+1014)=1008.6,代入所给选项A符合.答案:A6.某公司2008~2013年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:年份200820092010201120122013利润x12.214.6161820.422.3支出y0.620.740.810.8911.11()A.利润中位数是16,x与y有正线性相关关系B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系解析:由表知,利润中位数是(16+18)=17,且y随x的增大而增大,故选C.答案:C7.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg解析:由于回归直线的斜率为正值,故y与x具有正的线性相关关系,选项A中的结论正确;回归直线过样本点的中心,选项B中的结论正确;根据回归直线斜率的意义易知选项C中的结论正确;由于回归分析得出的是估计值,故选项D中的结论不正确.答案:D8.为了均衡教育资源,加大对偏远地区的教育投入,调查了某地若干户家庭的年收入x(单位:万元)和年教育支出y(单位:万元),调查显示年收入x与年教育支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.15x+0.2.由回归直线方程可知,家庭年收入每增加1万元,年教育支出平均增加__________万元.解析:因为回归直线的斜率为0.15,所以家庭年收入每增加1万元,年教育支出平均增加0.15万元.答案:0.159.某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元):x24568y3040605070(1)画出散点图;(2)从散点图中判断销售金额与广告费支出成什么样的关系?解析:(1)以x对应的数据为横坐标,以y对应的数据为纵坐标,所作的散点图如下图所2示:(2)从图中可以发现广告费支出与销售金额之间具有相关关系,并且当广告费支出由小变大时,销售金额也大多由小变大,图中的数据大致分布在某条直线的附近,即x与y成正相关关系.B...