考点40椭圆一、选择题1.(2013·新课标全国Ⅱ高考文科·T5)设椭圆的左、右焦点分别为,是上的点,,,则的离心率为()A.B.C.D.【解题指南】利用已知条件解直角三角形,将用半焦距c表示出来,然后借助椭圆的定义,可得a,c的关系,从而得离心率.【解析】选D.因为,所以。又,所以,即椭圆的离心率为,选D.2.(2013·大纲版全国卷高考理科·T8)椭圆C:的左、右顶点分别为,,点P在C上且直线斜率的取值范围是,那么直线斜率的取值范围是()A.B.C.D.【解题指南】将代入到中,得到与之间的关系,利用为定值求解的取值范围.【解析】选B.设,则,,,故.因为,所以3.(2013·大纲版全国卷高考文科·T8)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交于A,B两点,且=3,则C的方程为()A.B.C.D.【解题指南】由过椭圆的焦点且垂直轴的通径为求解.【解析】选C.设椭圆得方程为,由题意知,又,解得或(舍去),而,故椭圆得方程为.4.(2013·四川高考文科·T9)从椭圆上一点向轴作垂线,垂足恰为左焦点,是椭圆与轴正半轴的交点,是椭圆与轴正半轴的交点,且(是坐标原点),则该椭圆的离心率是()A.B.C.D.【解题指南】本题主要考查的是椭圆的几何性质,解题时要注意两个条件的应用,一是与轴垂直,二是【解析】选C,根据题意可知点P,代入椭圆的方程可得,根据,可知,即,解得,即,解得,故选C.5.(2013·广东高考文科·T9)已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是()A.B.C.D.【解题指南】本题考查圆锥曲线中椭圆的方程与性质,用好的关系即可.【解析】选D.设C的方程为,则,C的方程是.6.(2013·辽宁高考文科·T11)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.【解题指南】由余弦定理解三角形,结合椭圆的几何性质(对称性)求出点到右焦点的距离,进而求得【解析】选B.在三角形中,由余弦定理得,又解得在三角形中,,故三角形为直角三角形.设椭圆的右焦点为,连接,根据椭圆的对称性,四边形为矩形,则其对角线且,即焦距又据椭圆的定义,得,所以.故离心率二、填空题7.(2013·江苏高考数学科·T12)在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为【解题指南】利用构建参数a,b,c的关系式.【解析】由原点到直线的距离为得,因到的距离为故,又所以又解得【答案】.8.(2013·上海高考文科·T12)与(2013·上海高考理科·T9)相同设AB是椭圆的长轴,点C在上,且.若AB=4,BC=,则的两个焦点之间的距离为.【解析】如图所示,以AB的中点O为坐标原点,建立如图所示的坐标系.【答案】.9.(2013·福建高考文科·T15)与(2013·福建高考理科·T14)相同椭圆Γ:的左、右焦点分别为F1,F2,焦距为2c.若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.【解题指南】①,而2c是焦距,2a是定义中的|PF1|+|PF2|=2a,因此,如果题目出现焦点三角形(由曲线上一点连接两个焦点而成),求解离心率,一般会选用这种定义法:.②求解离心率,还有一种方法,叫平方法.注意到,在具体问题中,结合基本量关系式a2=b2+c2进行求解,显然这样的方法适合于题目给出标准方程的题.【解析】∠MF1F2是直线的倾斜角,所以∠MF1F2=60°,∠MF2F1=30°,所以△MF2F1是直角三角形,在Rt△MF2F1中,|F2F1|=2c,|MF1|=c,|MF2|=,所以.【答案】.10.(2013·辽宁高考理科·T15)已知椭圆的左焦点为,与过原点的直线相交于两点,连接若,则的离心率【解题指南】由余弦定理解三角形,结合椭圆的几何性质(对称性)求出点A到右焦点的距离,进而求得.【解析】在三角形中,由余弦定理得,又,解得在三角形中,,故三角形为直角三角形。设椭圆的右焦点为,连接,根据椭圆的对称性,四边形为矩形,则其对角线且,即焦距又据椭圆的定义,得,所以.故离心率【答案】.三、解答题11.(2013·陕西高考文科·T20)已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.(1)求动点M的轨迹C的方程;(2)过点P(0,3)的直线m与轨迹C交于A,B两点....