湖北省枣阳市2017届高三下学期第三次模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。满分150分,考试时间120分钟。第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.2.考试结束后,将本试题卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1,2},集合B={x|x2≤1},A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,1}C.{﹣1,0}D.{﹣1,0,1}2.若数列中,,则取得最大值时的值是().13141514或153.下列四个函数中,既是奇函数又是定义域上的单调递增的是()A.B.C.D.4.已知复数满足,则=()A.B.C.D.5.某四面体的三视图如右图所示,正视图.俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.B.C.D.6.抛物线y2=16x的焦点到双曲线﹣=1的渐近线的距离是()A.1B.C.2D.27.已知函数f(x)=sin2x﹣cos2x+1,下列结论中错误的是()A.f(x)的图象关于(,1)中心对称B.f(x)在(,)上单调递减C.f(x)的图象关于x=对称D.f(x)的最大值为38.一直线l与平行四边形ABCD中的两边AB、AD分别交于E、F,且交其对角线AC于K,若=2,=3,=λ(λ∈R),则λ=()A.2B.C.3D.59.对任意a∈R,曲线y=ex(x2+ax+1﹣2a)在点P(0,1﹣2a)处的切线l与圆C:(x﹣1)2+y2=16的位置关系是()A.相交B.相切C.相离D.以上均有可能10.如图所示的程序框图,输出的值为()A.B.C.D.11.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.4πB.12πC.48πD.6π12.已知函数f(x)=x3+ax2+bx+c,g(x)=3x2+2ax+b(a,b,c是常数),若f(x)在(0,1)上单调递减,则下列结论中:①f(0)•f(1)≤0;②g(0)•g(1)≥0;③a2﹣3b有最小值.正确结论的个数为()A.0B.1C.2D.3二、填空题:本大题共4小题,每小题5分,满分20分.13、已知函数是奇函数,则m的值等于14、已知等比数列{}为递增数列.若>0,且,则数列{}的公比=_____.15.设数列是首项为1公比为2的等比数列前项和,若,则.16.已知函数,则.一、解答题(解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求cosA的值;(2)若a=4,求c的值.18.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.(1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.下面的临界值表仅供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:,其中n=a+b+c+d)19、(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明://平面;(2)设,三棱锥的体积,求到平面的距离.20、(本小题满分12分)设椭圆:()的离心率与双曲线的离心率互为倒数,且内切于圆。(1)求椭圆的方程;(2)已知,是椭圆的下焦点,在椭圆上是否存在点P,使的周长最大?若存在,请求出周长的最大值,并求此时的面积;若不存在,请说明理由。21、(本小题满分12分)已知函数(1)求函数的极值;(2)若对于任意的,若函数在区间上有最值,求实数的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22、选修4—4:坐标系与参数方程(本题满分10分)在平面直角坐标系中,直线过点且倾斜角为,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点;(1)求曲线的直角坐标方程;(2)若,求...