考点39椭圆一、选择题1.(2014·福建高考文科·T12)在平面直角坐标系中,两点间的“L-距离”定义为则平面内与x轴上两个不同的定点的“L-距离”之和等于定值(大于)的点的轨迹可以是()【解题指南】本题是新定义问题,考查学生分析问题、解决问题的能力.【解析】选A.以线段的中点为坐标原点,所在直线为x轴,建立平面直角坐标系.不妨设,则.由题意(为定值),整理得.当时,方程化为,即,即.当时,方程化为,即,即.当时,方程化为,即.所以A图象符合题意.2.(2014·福建高考理科·T9).设分别为圆和椭圆上的点,则两点间的最大距离是()A.B.C.D.【解题指南】两动点问题,可以化为一动一静,因此考虑与圆心联系.【解析】D.圆心M,设椭圆上的点为,则,当时,.所以.二、填空题3.(2014·辽宁高考文科·T15)与(2014·辽宁高考理科·T15)相同已知椭圆,点与点C的焦点不重合,若关于C的焦点的对称点分别为,线段的中点在C上,则【解析】根据题意,椭圆的左右焦点为,由于点的不确定性,不妨令其为椭圆的左顶点,线段的中点为椭圆的上顶点,则关于C的焦点的对称点分别为,而点,据两点间的距离公式得答案:【误区警示】在无法明确相关点的具体情况的时候,可以取特殊情形处理问题。避免对一般情况处理的复杂性三、解答题4.(2014·天津高考文科·T18)设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率.(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2.求椭圆的方程.【解析】(1)设椭圆右焦点F2的坐标为(c,0),由|AB|=|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2,故椭圆方程为=1.设P(x0,y0),由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c),由已知,有·=0,即(x0+c)c+y0c=0.又c≠0,故有x0+y0+c=0.①因为点P在椭圆上,故=1.②由①和②可得+4cx0=0,而点P不是椭圆的顶点,故x0=-,代入①得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1==-c,y1==c,进而圆的半径r==c.由已知,有|TF2|2=|MF2|2+r2,又|MF2|=2,故有=8+.解得c2=3.所以所求椭圆的方程为=1.5.(2014·天津高考理科·T18)(本小题满分13分)设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.(1)求椭圆的离心率;(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切.求直线的斜率.【解析】(1)设椭圆的右焦点的坐标为.由,可得,又,则.所以,椭圆的离心率.,所以,解得,.(2)由(1)知,.故椭圆方程为.设.由,,有,.由已知,有,即.又,故有.①又因为点在椭圆上,所以.②由①和②可得.而点不是椭圆的顶点,故,代入①得,即点的坐标为.设圆的圆心为,则,,进而圆的半径.设直线的斜率为,依题意,直线的方程为.由与圆相切,可得,即,整理得,解得.所以,直线的斜率为或.6.(2014·新课标全国卷Ⅱ高考文科数学·T20)(本小题满分12分)设F1,F2分别是椭圆+=1的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为2,且=5,求a,b.【解题提示】(1)利用直线MN的斜率为再结合a2=b2+c2表示出关于离心率e的方程,解方程求得离心率.(2)结合图形,利用椭圆的性质和焦半径公式求得a,b.【解析】(1)因为由题知,=,所以·=,且a2=b2+c2.联立整理得:2e2+3e-2=0,解得e=.所以C的离心率为.(2)由三角形中位线知识可知,MF2=2×2,即=4.设F1N=m,由题可知MF1=4m.由两直角三角形相似,可得M,N两点横坐标分别为c,-c.由焦半径公式可得:MF1=a+ec,NF1=a+e,且MF1∶NF1=4∶1,e=,a2=b2+c2.联立解得a=7,b=2.所以,a=7,b=2.7.(2014·浙江高考理科·T21)(本题满分15分)如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.(1)已知直线的斜率为,用表示点的坐标;(2)若过原点的直线与垂直,证明:点到直线的距离的最大值为.【解析】(1)设直线的方程为,由,消去得由于与只有一个公共点,故,即,所以解得点的坐标为,又点在第一象限,故点的坐标为(2)由于直线过原点且与直线垂直,故直线的方程为...