考点50与离散型随机变量的分布列、均值相结合的综合问题【考纲要求】理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.【命题规律】离散型随机变量的期望与方差的应用,是高考的重要考点,不仅考查学生的理解能力与数学计算能力,而且不断创新问题情境,突出学生运用概率、期望与方差解决实际问题的能力,以解答题为主,中等难度.【典型高考试题变式】与离散型随机变量的分布列、均值相结合的综合问题例1.【2017课标3】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?【分析】(1)所有的可能取值为200,300,500,利用题意求得概率即可得到随机变量的分布列;(2)由题中所给条件分类讨论可得n=300时,Y的数学期望达到最大值,为520元.【解析】(1)由题意知,所有可能取值为200,300,500,由表格数据知,,.因此的分布列为0.20.40.4所以n=300时,Y的数学期望达到最大值,最大值为520元.【名师点睛】离散型随机变量的分布列指出了随机变量X的取值以及取各值的概率;要理解两种特殊的概率分布——两点分布与超几何分布,并善于灵活运用两性质:一是pi≥0(i=1,2,…);二是p1+p2+…+pn=1检验分布列的正误.【变式1】【2018河南省漯河市模拟】汽车店是一种以“四位一体”为核心的特许经营模式,包括整车销售、零配件销售、售后服务、信息反馈等。某品牌汽车店为了了解,,三种类型汽车质量问题,对售出的三种类型汽车各取100辆进行跟踪服务,发现各车型一年内需要维修的车辆如下表所示1.表1(1)某公司一次性从店购买该品牌,,型汽车各一辆,记表示这三辆车的一年内需要维修的车辆数,求的分布列及数学期望.(各型汽车维修的频率视为其需要维修的概率).(2)该品牌汽车店为了对厂家新研发的一种产品进行合理定价,将该产品按使事先拟定的各种价格进行试销相等时间,得到数据如表2.预计在今后的销售中,销量与单价仍然服从的关系,且该产品的成本是500元/件,为使4S店获得最大利润(利润=销售收入-成本),该产品的单价应定位多少元?表1车型频数202040表2单价(元)800820840850880900销量(件)908483807568【解析】(1)根据表格,型车维修的概率为,型车维修的概率为,型车维修的概率为.由题意,的可能值为0,1,2,3,所以;;所以的分布列为0123所以.【变式2】【2018四川省德阳市三校联合测试】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)(0,210](210,400]某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124132200215225300410若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应交电费多少元?现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.【解析】(1)元,设取到第二阶梯电量的用户数为,可知第二阶梯电量的用户有3户,则可取0,1,2,3,,,故的分布列是0123所以,可知从全市中抽取10户的用...