大题精做2数列[2019·榆林一模]已知数列是首项为,公比为的等比数列,设,数列满足.(1)求证:数列是等差数列;(2)求数列的前项和.【答案】(1)详见解析;(2).【解析】(1)证明:∵数列是首项为,公比为的等比数列,∴,∵,∴,∵,∴,∴数列是首项为1,公差为3的等差数列.(2)解:∵,,,∴,∴数列的前项和,∴,na114a14q1423lognnbanNncnnncabnbncnnS21132334nnSnnNna114a14q111111444nnnnaaq1423lognnba143log2nnba14nna1413log2323114nnbnnnNnbnnncab14nna311nbnnN113113244nnnnncabnnncn23111111147353244444nnnSnn23411111111473532444444nnnSnn∴,∴.1.[2019·驻马店期末]已知等差数列的前项和为,数列为正项等比数列,且,,,.(1)求数列和的通项公式;(2)若,设的前项和为,求.2.[2019·茂名一模]已知数列满足,.(1)求,,的值;(2)证明数列为等差数列;2341131111111133232444444424nnnnSnn21132334nnSnnNnannSnb13a11b3212bS5322aabnanb2nnnnScbn为奇数为偶数ncnnT2nTna11a*112nnnaanaN2a3a4a1na(3)设,求数列的前项和.3.[2019·哈三中期末]数列的前项和为,且,.(1)证明:数列为等比数列,并求;(2)若,求数列的前项和.1nnncaancnnSnannS12a1nnaSnNnSnS2lgnnbanbnnT1.【答案】(1),;(2).【解析】(1)设等差数列的公差为,等比数列的公比为,∵,,,,∴,∴或,且是正项等比数列,∴,,∴,.(2)由(1)知,∴,∴.2.【答案】(1),,;(2)见证明;(3).21nan12nnb212121321nnTnnadnbq13a11b3212bS5322aab261222qddq3q2qnb2d2q21nan12nnb32122nnnSnn11122nnnnncn为奇数为偶数13521211111122223352121nnTnn2121122412112114321nnnn13151721nnSn【解析】(1),得,,,即,,的值分别为,,.(2)证明:由得,∴,又,,∴数列是首项为,公差为2的等差数列.(3)由(2)得,∴的通项公式为.∴,∴.3.【答案】(1);(2).【解析】(1),得,,,,故此数列为,,,,,,11a112nnnaaa1211112123aaa232113212513aaa343115212715aaa2a3a4a131517112nnnaaa112112nnnnaaaa1112nnaa11a111a1na111a112121nnnana121nan11111212122121nnncaannnn1231111111112335572121nnSccccnn11122121nnn2n2lg2n11nnnnaSaS①②①②1nnnaaa212aa12nnaa2n22223212,122,nnnan;时,,∵也适合,故,,∴数列为等比数列.(2).112Sa2n12121222222212nnnnS112S2nnS11222nnnnSSnS321242lglglglg2lg2lg213521lg2nnnTaaan2211lg2lg22nnn