电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学基础复习 第二章 函数 第5课时 函数的单调性VIP免费

高中数学基础复习 第二章 函数 第5课时  函数的单调性_第1页
1/12
高中数学基础复习 第二章 函数 第5课时  函数的单调性_第2页
2/12
高中数学基础复习 第二章 函数 第5课时  函数的单调性_第3页
3/12
要点·疑点·考点课前热身能力·思维·方法延伸·拓展误解分析第第55课时函数的单调性课时函数的单调性要点要点··疑点疑点··考点考点1.函数的单调性一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.函数是增函数还是减函数.是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上可能是减函数,例如函数y=x2,当x[0∈,+∞]时是增函数,当x(-∞∈,0)时是减函数.2.单调区间如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.在单调区间上增函数的图象是上升的,减函数的图象是下降的.3.用定义证明函数单调性的步骤证明函数f(x)在区间M上具有单调性的步骤:(1)取值:对任意x1,x2M∈,且x1<x2;(2)作差:f(x1)-f(x2);(3)判定差的正负;(4)根据判定的结果作出相应的结论.4.复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数单调性u=g(x)增增减减y=f(u)增减增减y=f[g(x)]增减减增注意:函数的单调区间只能是其定义域的子区间返回课前热身1.下列函数中,在区间(-∞,0)上是增函数的是()(A)f(x)=x2-4x+8(B)g(x)=ax+3(a≥0)(C)h(x)=-2/(x+1)(D)s(x)=log(1/2)(-x)2.定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a<b<0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a)其中成立的是()(A)①与④(B)②与③(C)①与③(D)②与④DB答案:(3)B(4)(-∞,-1),(-1,+∞)(-1,1](5)C3.如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是()(A)(-∞,-3)(B)(-∞,-3)(C)(-3,+∞)(D)(-∞,3)4.函数的减区间是_____________________;函数的减区间是_____________5.函数f(x)=-log(1/2)(-x2+3x-2)的减区间是()A.(-∞,1)B.(2,+∞)C.(1,32)D.[32,2]xxxf11xxxf11返回能力能力··思维思维··方法方法1.讨论函数f(x)=x+a/x(a>0)的单调性【解题回顾】含参数函数单调性的判定,往往对参数要分类讨论.本题的结论十分重要,在一些问题的求解中十分有用,应予重视.2.2.已知已知y=f(x)y=f(x)是奇函数,它在是奇函数,它在(0(0,,+∞)+∞)上是增函数,且上是增函数,且f(x)f(x)<<00,,试问试问F(x)=1/f(x)F(x)=1/f(x)在在((--∞∞,,0)0)上是增函数还是减函数上是增函数还是减函数??【解题回顾】本题最容易发生的错误,是受已知条件的影【解题回顾】本题最容易发生的错误,是受已知条件的影响,一开始在响,一开始在(0(0,,+∞)+∞)内任取内任取xx11<<xx22,,展开证明展开证明..这样就这样就不能保证不能保证--xx11,,-x-x22在在((--∞∞,,0)0)上的任意性而导致错误上的任意性而导致错误..【解题回顾】原函数及其反函数的单调性是一致的.函数的单调性有着多方面的应用,如求函数的值域、最值、解不等式等,但在利用单调性时,不可忽略函数的定义域.3.设①试判断函数f(x)的单调性并给出证明;②若f(x)的反函数为f-1(x),证明方程f-1(x)=0有惟一解;③解关于x的不等式f[x(x-1/2)]<1/2xxxxf11lg21【解题回顾】本题主要是考查复合函数的单调性,当内外函数的增减性一致时,为增函数;当内外函数的增减性相异时,为减函数.另外,复合函数的单调区间一定是定义域的子区间,在解题时,要注意这一点.4.是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?返回延伸延伸··拓展拓展【解题回顾】抽象函数是高考考查函数的目标之一、几种常见的抽象函数在做小题时,可与具体函数相对应如.f(x+g)=f(x)+f(y).f(x)f(y)=f(x+g).f(x·y)=f(x)+f(y)等分别与一次函数、指数函数、对数函数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学基础复习 第二章 函数 第5课时 函数的单调性

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部