2015年山东省青岛市高考数学二模试卷(文科)一、选择题(本大题共10小题.每小题5分,共50分)1.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A.3B.2C.5D.2.已知集合M={x|2x﹣x2>0},N={x|x2+y2=1},则M∩N=()A.[﹣1,2)B.(0,1)C.(0,1]D.∅3.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人,为了解该校学生健康状态,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为()A.84B.78C.81D.964.函数y=的值域为()A.[0,+∞)B.(0,1)C.[0,1)D.[0,1]5.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为25时,则输出的结果为()A.4B.5C.6D.76.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.7.“0≤m≤1”是“函数f(x)=sinx+m﹣1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件18.已知函数f(x)=2sin(2x+φ)(|φ|<的图象过点,则f(x)的图象的一个对称中心是()A.B.C.D.9.设x,y满足约束条件,则下列不等式恒成立的是()A.x≥3B.y≥4C.x+2y﹣8≥0D.2x﹣y+1≥010.如果函数y=f(x)在区间I上是增函数,而函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上“缓增函数”,区间I叫做“缓增区间”,若函数f(x)=是区间I上“缓增函数”,则“缓增区间”I为()A.[1,+∞)B.C.[0,1]D.二、填空题(本大题共5小题,每小题5分,共25分)11.已知不共线的平面向量,满足,,那么|=.12.已知函数f(x)=则f(f(﹣1))=.13.已知实数x,y满足2x+2y=1,则x+y的最大值是.14.某三棱锥的三视图如图所示,该三棱锥的体积是;215.已知双曲线=1(a>0,b>0)的右焦点为F,过F作斜率为﹣1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为,则该双曲线的离心率为.三、解答题(本大题共6小题,共75分)16.某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.17.已知向量,,实数k为大于零的常数,函数f(x)=,x∈R,且函数f(x)的最大值为.(Ⅰ)求k的值;(Ⅱ)在A中,A9分别为内角A2所对的边,若<A<π,f(A)=0,且b=2,a=2,求的值.18.如图,在正四棱台ABCD﹣A1B1C1D1中,A1B1=a,AB=2a,,E、F分别是AD、AB的中点.(Ⅰ)求证:平面EFB1D1∥平面BDC1;(Ⅱ)求证:A1C⊥平面BDC1.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.319.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*.(Ⅰ)求{an},{bn}的通项公式;(Ⅱ)若数列{dn}满足(n∈N*),且d1=16,试求{dn}的通项公式及其前2n项和S2n.20.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.21.已知函数f(x)=1﹣﹣lnx(a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在点处的切线方程;(Ⅱ)当a≥0时,记函数Γ(x)=﹣1+f(x),试求Γ(x)的单调递减区间;(Ⅲ)设函数h...