课时分层作业(四十三)概率的基本性质(建议用时:40分钟)一、选择题1.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()A.0.42B.0.28C.0.3D.0.7C[ 摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1-0.42-0.28=0.3,故选C.]2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是()A.60%B.30%C.10%D.50%D[“甲获胜”与“甲、乙下成和棋”是互斥事件,“甲不输”即“甲获胜或甲、乙下成和棋”,故P(甲不输)=P(甲胜)+P(甲、乙和棋),∴P(甲、乙和棋)=P(甲不输)-P(甲胜)=90%-40%=50%.]3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为()A.B.C.D.B[试验的样本空间Ω={AB,AC,AD,AE,BC,BD,BE,CD,CE,DE},共有10个样本点,其中事件“这2张卡片上的字母按字母顺序恰好是相邻的”包含4个样本点,故所求的概率为=.]4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为()A.0.40B.0.30C.0.60D.0.90A[不够8环的概率为1-0.20-0.30-0.10=0.40.]5.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A.B.C.D.C[试验的样本空间Ω={金木,金水,金火,金土,木水,木火,木土,水火,水土火土},共10个样本点,事件“抽取的两种物质不相克”包含5个样本点,故其概率为=.]二、填空题6.甲、乙两人打乒乓球,两人打平的概率是,乙获胜的概率是,则乙不输的概率是________.[乙不输表示打平或获胜,故其概率为P=+=.]7.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.[设3个红色球为A1,A2,A3,2个黄色球为B1,B2,从5个球中,随机取出2个球的事件有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10种.其中2个球的颜色不同的有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种,所以所求概率为=.]8.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x,y,则log2xy=1的概率为________.[易知试验样本点的总数为36,由log2xy=1,得2x=y,其中x,y∈{1,2,3,4,5,6},所以或或共3个样本点,所以P==.]三、解答题9.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率.[解]法一:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.∴任取1球得红球或黑球的概率为P1==.(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为=.法二:(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=+=.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=++=.10.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.[解](1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个,因此所求事件的概率为P==.(2)先从袋中随机取一个球,记下编号为m,放回后...