第3课圆的方程【考点导读】1.掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。2.本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主.【基础练习】1.已知点A(3,-2),B(-5,4),以线段AB为直径的圆的方程为(x+1)2+(y-1)2=252.过点A(1,-1)、B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(x-1)2+(y-1)2=43.已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为4.圆与y轴交于A、B两点,圆心为P,若∠APB=120°,则实数c值为_-11__5.如果方程所表示的曲线关于直线对称,那么必有__D=E__【范例导析】【例1】设方程,若该方程表示一个圆,求m的取值范围及这时圆心的轨迹方程。分析:配成圆的标准方程再求解解:配方得:该方程表示圆,则有,得,此时圆心的轨迹方程为,消去m,得,由得x=m+3所求的轨迹方程是,注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中变式1:方程表示圆,求实数a的取值范围,并求出其中半径最小的圆的方程。解:原方程可化为1当a时,原方程表示圆。又当,所以半径最小的圆方程为例2求半径为4,与圆相切,且和直线相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆.圆与直线相切,且半径为4,则圆心的坐标为或.又已知圆的圆心的坐标为,半径为3.若两圆相切,则或.(1)当时,,或(无解),故可得.∴所求圆方程为,或.(2)当时,,或(无解),故.∴所求圆的方程为,或.说明:对本题,易发生以下误解:由题意,所求圆与直线相切且半径为4,则圆心坐标为,且方程形如.又圆,即,其圆心为,半径为3.若两圆相切,则.故,解之得.所以欲求圆的方程为,或.上述误解只考虑了圆心在直线上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.点评:在解决求圆的方程这类问题时,应当注意以下几点:(1)确定圆方程首先明确是标准方程还是一般方程;(2)根据几何关系(如本例的相切、弦长等)建立方程求得a、b、r或D、E、F;(3)待定系数法的应用,解答中要尽量减少未知量的个数.【例2】设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.分析:注意挖掘题目的条件,充分利用圆的几何性质解决问题.2解法一:设圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为│b│,│a│.由题设圆P截x轴所得劣弧对的圆心角为900,知圆P截x轴的弦长为,故r2=2b2又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1.又点P(a,b)到直线x2y=0的距离为所以5d2=│a-2b│2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得由于r2=2b2知于是,所求圆的方程是:(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一得将a2=2b2-1代入上式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2-1)≥0,得5d2≥1.所以5d2有最小值1,从而d有最小值将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由│a-2b│=1知a,b同号.于是,所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.点拨:求圆的方程通常有两类方法,一是几何法,即通过研究圆的性质、直线和圆、圆和圆的位置关系进而求得圆的基本量(圆心、半径)和圆的方程,二是代数法,即根据题意设出圆的方程,再利用条件得到有关方程系数的方程组,解方程组得到方程系数,从而求出圆的方程.【例4】在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.(1)求圆的方程;3(2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.分析:问题(2)可以转化为探求以右焦点F为顶点,半径为4的圆(x─4)2...