2.1.2空间中直线与直线之间的位置关系课后篇巩固提升基础巩固1.分别在两个平面内的两条直线的位置关系是()A.异面B.平行C.相交D.以上都有可能解析如图,在长方体ABCD-A1B1C1D1中,直线AD1在平面AA1D1D中,直线BB1,BC1分别在平面BB1C1C中,但AD1∥BC1,AD1与BB1异面,又直线AB在平面ABCD中,显然AD1∩AB=A.答案D2.分别和两条异面直线都相交的两条直线的位置关系是()A.相交B.异面C.异面或相交D.平行解析如图有两种情况.答案C3.下列命题中,正确的结论有()①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个解析①中,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故①错误;②中,如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故②正确;③中,如果一个角的两边和另一个角的两边分别垂直,两角相等或互补,故③正确;④中,如果两条直线同时平行于第三条直线,那么这两条直线平行,故④正确;故选C.答案C4.分别和两条异面直线平行的两条直线的位置关系是()A.平行B.相交C.异面D.相交或异面解析画出图形,得到结论.如图(1),分别与异面直线a,b平行的两条直线c和d是相交关系.如图(2),分别与异面直线a,b平行的两条直线c和d是异面关系.综上可知,应选D.答案D5.如图所示,在三棱锥S-MNP中,E,F,G,H分别是棱SN,SP,MN,MP的中点,则EF与HG的位置关系是()A.平行B.相交C.异面D.平行或异面解析 E,F分别是SN和SP的中点,∴EF∥PN.同理可证HG∥PN,∴EF∥HG.答案A6.如图,在长方体ABCD-A1B1C1D1中,判断下列直线的位置关系:(1)直线A1B与直线D1C的位置关系是;(2)直线A1B与直线B1C的位置关系是;(3)直线D1D与直线D1C的位置关系是;(4)直线AB与直线B1C的位置关系是.解析(1)在长方体ABCD-A1B1C1D1中,A1D1∥BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C.(2)直线A1B与直线B1C不同在任何一个平面内.(3)直线D1D与直线D1C相交于点D1.(4)直线AB与直线B1C不同在任何一个平面内.答案(1)平行(2)异面(3)相交(4)异面7.若∠AOB=120°,直线a∥OA,a与OB为异面直线,则a和OB所成的角的大小为.解析根据等角定理及两条直线所成角的定义知,a与OB所成的角为60°.答案60°8.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角等于.解析取A1B1中点M,连接MG,MH,则MG∥EF,MG与GH所成的角等于EF与GH所成的角.易知△MGH为正三角形,∠MGH=60°,∴EF与GH所成的角等于60°.答案60°9.在如图所示的正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点,求证:(1)EFE1F1;(2)∠EA1F=∠E1CF1.证明(1)连接BD,B1D1,在△ABD中,因为E,F分别为AB,AD的中点,所以EF12BD,同理E1F1=12B1D1,在正方体ABCD-A1B1C1D1中,因为AA1DD1,AA1BB1,所以B1BDD1,所以四边形BDD1B1是平行四边形,所以BDB1D1,所以EFE1F1.(2)取A1B1的中点M,连接BM,F1M,因为MF1B1C1,B1C1BC,所以MF1BC,所以四边形BCF1M是平行四边形,所以BM∥CF1,因为A1MEB,所以四边形EBMA1是平行四边形,所以A1E∥MB,所以A1E∥F1C,同理可证:A1F∥E1C,又∠EA1F与∠F1CE1两边的方向均相反,所以∠EA1F=∠E1CF1.10.在空间四边形ABCD中,AB=CD,AB与CD成30°角,E,F分别为BC,AD的中点,求EF和AB所成的角.解取BD的中点G,连接EG,FG, E,F分别为BC,AD的中点,∴EG12CD,GF12AB.∴EG与GF所成的角即为AB与CD所成的角. AB=CD,∴△EFG为等腰三角形.又AB与CD所成角为30°,∴∠EGF=30°或150°. ∠GFE就是EF与AB所成的角,∴EF与AB所成角为75°或15°.能力提升1.正方体ABCD-A1B1C1D1中,P,Q分别为AA1,CC1的中点,则四边形D1PBQ是()A.正方形B.菱形C.矩形D.空间四边形解析设正方体棱长为2,直接计算可知四边形D1PBQ各边均为❑√5,又四边形D1PBQ是平行四边形,所以四边形D1PBQ是菱形.答案B2.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1...