第八章概率与统计考点测试56分类加法计数原理与分步乘法计数原理高考概览考纲研读运用分类、分步计数原理解决实际或数学问题是高考热点,要注意与概率问题的结合一、基础小题1.若x∈{1,2,3},y∈{5,7,9},则x·y的不同值的个数是()A.2B.6C.9D.8答案C解析求x·y需分两步取值:第一步,x的取值有3种;第二步,y的取值有3种,故有3×3=9(个)不同的值.故选C.2.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.5种B.2种C.3种D.4种答案B解析传递方式有:甲→乙→丙→甲;甲→丙→乙→甲.故选B.3.把10个苹果分成三堆,要求每堆至少有1个,至多有5个,则不同的分法共有()A.4种B.5种C.6种D.7种答案A解析分类考虑,若最少一堆是1个,那由至多5个知另两堆分别为4个、5个,只有1种分法;若最少一堆是2个,则由3+5=4+4知有2种分法;若最少一堆是3个,则另两堆为3个、4个,共1种,故共有分法1+2+1=4种.4.已知5名同学报名参加2个课外活动小组,每名同学限报其中一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种答案D解析5名同学依次报名,每人均有2种不同的选择,所以共有2×2×2×2×2=32(种)不同的报名方法.故选D.5.小王有70元钱,现有面值分别为20元和30元的两种手机充值卡.若他至少买一张,则不同的买法共有()A.7种B.8种C.6种D.9种答案A解析要完成的一件事是“至少买一张手机充值卡”,分三类完成:买1张卡,买2张卡,买3张卡.而每一类都能独立完成“至少买一张手机充值卡”这件事.买1张卡有2种方法,买2张卡有3种方法,买3张卡有2种方法,故共有2+3+2=7(种)不同的买法.故选A.6.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有()A.4种B.5种C.6种D.9种答案B解析记反面为1,正面为2;则正反依次相对有12121212,21212121两种;有两枚反面相对有21121212,21211212,21212112三种,共5种摆法,故选B.7.有四位老师在同一年级的4个班级中各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是()A.8种B.9种C.10种D.11种答案B解析解法一:设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,由分类加法计数原理知共有3+3+3=9(种)不同的安排方法.解法二:让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法.8.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120答案A解析分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.9.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种答案C解析从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种).故选C.10.某彩票公司每天开奖一次,从1,2,3,4四个号码中随机开出一个作为中奖号码,开奖时如果开出的号码与前一天的相同,就要重开,直到开出与前一天不同的号码为止.如果第一天开出的号码是4,那么第五天开出的号码也同样是4的所有可能的情况有()A.14种B.21种C.24种D.35种答案B解析第一天开出4,第五天同样开出4,则第二天开出的号码有3种情况,如果第三天开出的号码是4,则第四天开出的号码有3种情况;如果第三天开出的号码不是4,则第四天开出的号码有2种情况,所以满足条件的情况有3×1×3+3×2×2=21(种).故选B.11...