周练卷(二)(时间:90分钟满分:120分)【选题明细表】知识点、方法题号函数的概念及映射1,2函数概念的应用3,4,7,10,12,17函数的表示方法5,9,11,13,16,20分段函数6,8,14,15,18,19一、选择题(每小题5分,共60分)1.设集合A={x|0≤x≤6},B={y|0≤y≤2},则f:A→B是映射的是(B)(A)f:x→y=3x(B)f:x→y=x(C)f:x→y=x(D)f:x→y=x解析:根据映射定义A中的元素都有唯一的元素与之对应,可得B满足,故选B.2.设x取实数,则f(x)与g(x)表示同一个函数的是(B)(A)f(x)=x,g(x)=(B)f(x)=,g(x)=(C)f(x)=1,g(x)=(x-1)0(D)f(x)=,g(x)=x-3解析:A组中两函数的定义域相同,对应关系不同,g(x)=|x|≠x,故A中的两函数不为同一个函数;B组中两函数的定义域均为所有正数构成的集合,对应关系化简为f(x)=g(x)=1,故B中的两函数是同一个函数;C组中两函数的定义域不同,f(x)的定义域为R,g(x)的定义域为{x|x≠1},故C中的两函数不为同一个函数;D组中两函数的定义域不同,g(x)的定义域为R,f(x)的定义域由不等于-3的实数构成,故D中的两函数不为同一个函数.故选B.3.函数f(x)=+的定义域为(C)(A)(-3,0](B)(-3,1](C)[-1,3)∪(3,+∞)(D)[-1,3)解析:要使函数f(x)=+有意义,须解得x≥-1,且x≠3,所以f(x)的定义域为[-1,3)∪(3,+∞).故选C.4.设f(x)=(x≠0),则f()等于(A)(A)f(x)(B)(C)f(-x)(D)解析:f()====f(x).故选A.5.已知对于任意两个实数x,y,都有f(x+y)=f(x)+f(y)成立.若f(-3)=2,则f(2)等于(D)(A)-(B)(C)(D)-解析:令x=y=0,则f(0+0)=f(0)+f(0)f(0)=0;⇒令x=3,y=-3,则f(0)=f(3)+f(-3),且f(-3)=2f(3)=-2;⇒f(3)=f(1)+f(2),f(2)=f(1)+f(1)f(2)=⇒f(3)=-.故选D.6.已知f(x)=则f(f(5))等于(C)(A)-3(B)1(C)-1(D)4解析:因为f(5)=f(5-3)=f(2)=f(2-3)=f(-1)=-2-(-1)3=-2+1=-1.所以f(f(5))=f(-1)=-1.选C.7.函数f(x)=的值域是(D)(A)(-∞,2](B)(0,+∞)(C)[2,+∞)(D)[0,2]解析:因为函数f(x)=≥0,而且-x2-2x+3=-(x2+2x-3)=-(x+1)2+4≤4,所以≤2,所以0≤f(x)≤2.故选D.8.设集合P={x|0≤x≤2},Q={y|0≤y≤2},则图中能表示P到Q的映射的是(C)(A)(1)(2)(3)(4)(B)(1)(3)(4)(C)(1)(4)(D)(3)解析:(2)不是映射,排除选项A,(3)中当x∈(1,2]时在Q中无元素与之对应,即不表示P到Q的映射,(1)(4)表示由P到Q的映射,故选C.9.函数y=+1的图象是下列图象中的(A)解析:当x=0时,y=+1=2.故排除B,D;当x=2时,y=+1=-1+1=0.故排除C.选A.10.函数f(x)=的值域是(D)(A)R(B)[0,+∞)(C)[0,3](D)[0,2]∪{3}解析:作出y=f(x)的图象,如图所示.由图象知,f(x)的值域是[0,2]∪{3}.故选D.11.已知f(3x+2)=9x2+3x-1,则f(x)等于(C)(A)3x2-x-1(B)81x2+127x+53(C)x2-3x+1(D)6x2+2x+1解析:设t=3x+2,则x=,代入解析式得,所以f(t)=9()2+3·-1=t2-3t+1,所以f(x)=x2-3x+1,故选C.12.设函数f(x)满足对任意的m,n(m,n为正整数)都有f(m+n)=f(m)·f(n)且f(1)=2,则++…+等于(C)(A)2011(B)2010(C)4020(D)4022解析:因为函数f(x)满足对任意的m,n(m,n为正整数)都有f(m+n)=f(m)·f(n)且f(1)=2,所以f(m+1)=f(m)·f(1),变形可得=f(1)=2,所以++…+=2010f(1)=4020.故选C.二、填空题(每小题5分,共20分)13.已知f(+1)=x+2,则f(x)=.解析:因为f(+1)=x+2=x+2+1-1=(+1)2-1,则f(x)=x2-1(x≥1).答案:x2-1(x≥1)14.(2018·江苏省通东中学高三第一阶段月考)a,b为实数,集合M={,1},N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b=.解析:因为f:x→x表示把集合M中的元素x映射到集合N中仍为x,所以或所以或而a=1,b=1时,M中有两个相同元素,故a=1,b=1不合题意.所以a+b=1.答案:115.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程数x(千米)之间的函数关系式是.解析:根据行程是否大于100千米来求出解析式,由题意,当0≤x≤100时,y=0.5x;当x>100时,y=100×0.5+(x-100)×0.4=10+0.4x.答案:y=16.已知函数y=f(x)是一次函数,且[f(x)]2-3f(x)=4x2-10x+4,则f(x)=.解析:因为函数y=f(x)是一次函数,所以设f(x)=ax+b(a≠0),因为[f(x)]2-3f(x)=4x2-10x+4,所以(ax+b)2-3(ax+b)=4x2-10x+4,所以a2x2+(2ab-3a)x+b2-3b=4x2-10x+4,所以所以a=-2,b=4或a=2,b=-1,所以f(x)...