第三章导数及其应用第一部分三年高考荟萃2010年高考题1..(2010全国卷2理)(10)若曲线12yx在点12,aa处的切线与两个坐标围成的三角形的面积为18,则a(A)64(B)32(C)16(D)8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22yxka,切线方程是13221()2yaaxa,令0x,1232ya,令0y,3xa,∴三角形的面积是121331822saa,解得64a.故选A.2.(2010辽宁文)(12)已知点P在曲线41xye上,为曲线在点P处的切线的倾斜角,则的取值范围是(A)[0,4)(B)[,)42(C)3(,]24(D)3[,)4答案D解析:选D.2441212xxxxxeyeeee,12,10xxeye,即1tan0,3[,)43.(2010辽宁理)(1O)已知点P在曲线y=41xe上,a为曲线在点P处的切线的倾斜角,则a的取值范围是(A)[0,4)(B)[,)423(,]24(D)3[,)4用心爱心专心1【答案】D【命题立意】本题考查了导数的几何意义,求导运算以及三角函数的知识。【解析】因为'2441(1)2xxxxeyeee,即tana≥-1,所以344.(2010全国卷2文)(7)若曲线2yxaxb在点(0,)b处的切线方程是10xy,则(A)1,1ab(B)1,1ab(C)1,1ab(D)1,1ab【解析】A:本题考查了导数的几何意思即求曲线上一点处的切线方程 02xyxaa,∴1a,(0,)b在切线10xy,∴1b5.(2010江西理)12.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为00StS,则导函数'ySt的图像大致为【答案】A【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A。6.(2010江苏卷)14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一用心爱心专心2块是梯形,记2(S梯形的周长)梯形的面积,则S的最小值是________。【解析】考查函数中的建模应用,等价转化思想。一题多解。设剪成的小正三角形的边长为x,则:222(3)4(3)(01)1133(1)(1)22xxSxxxx(方法一)利用导数求函数最小值。224(3)()13xSxx,22224(26)(1)(3)(2)()(1)3xxxxSxx2222224(26)(1)(3)(2)42(31)(3)(1)(1)33xxxxxxxx1()0,01,3Sxxx,当1(0,]3x时,()0,Sx递减;当1[,1)3x时,()0,Sx递增;故当13x时,S的最小值是3233。(方法二)利用函数的方法求最小值。令1113,(2,3),(,)32xttt,则:2224418668331tStttt故当131,83xt时,S的最小值是3233。7.(2010湖南文)21.(本小题满分13分)已知函数()(1)ln15,afxxaxax其中a<0,且a≠-1.(Ⅰ)讨论函数()fx的单调性;(Ⅱ)设函数332(23646),1(),1(){xxaxaxaaexefxxgx(e是自然数的底数)。是否存在a,用心爱心专心3使()gx在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。用心爱心专心48.(2010浙江理)(22)(本题满分14分)已知a是给定的实常数,设函数22()()()fxxaxbe,bR,xa是()fx的一个极大值点.用心爱心专心5(Ⅰ)求b的取值范围;(Ⅱ)设123,,xxx是()fx的3个极值点,问是否存在实数b,可找到4xR,使得1234,,,xxxx的某种排列1234,,,iiiixxxx(其中1234,,,iiii=1,2,3,4)依次成等差数列?若存在,求所有的b及相应的4x;若不存在,说明理由.解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识。(Ⅰ)解:f’(x)=ex(x-a)2(3)2,xabxbaba...