电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 点、直线、平面之间的位置关系 2.1.3-2.1.4 空间中直线与平面之间的位置关系、平面与平面之间的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题VIP免费

高中数学 第二章 点、直线、平面之间的位置关系 2.1.3-2.1.4 空间中直线与平面之间的位置关系、平面与平面之间的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题_第1页
高中数学 第二章 点、直线、平面之间的位置关系 2.1.3-2.1.4 空间中直线与平面之间的位置关系、平面与平面之间的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题_第2页
高中数学 第二章 点、直线、平面之间的位置关系 2.1.3-2.1.4 空间中直线与平面之间的位置关系、平面与平面之间的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题_第3页
2.1.3~2.1.4空间中直线与平面之间的位置关系平面与平面之间的位置关系课后训练案巩固提升1.三棱锥的四个面中,任两个面的位置关系是()A.相交B.平行C.异面D.不确定解析:三棱锥的四个面中,任两个面相交,交线分别是三棱锥的棱.答案:A2.已知直线a,b都与平面α相交,则a,b的位置关系是()A.相交B.平行C.异面D.以上都有可能解析:如图,在正方体中取平面ABCD为平面α,取AA1所在直线为直线a,BB1所在直线为直线b,则a∥b,取A1B所在直线为直线b,则a,b相交,取BC1所在直线为直线b,则a,b异面,故三种情况都有可能.答案:D3.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(平面AA1C1C、平面ABC1D1、平面ADC1B1、平面BB1D1D、平面A1BCD1及平面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个B.3个C.4个D.5个解析:如图,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.答案:B4.若直线a不平行于平面α,且a不在平面α内,则下列结论成立的是()A.a与α内的所有直线异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交解析:因为直线a与平面α不平行,也不在α内,所以直线a与平面α相交,所以a与α内的直线位置关系是相交或异面,故选B.答案:B5.如果空间的三个平面两两相交,那么()A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线解析:空间三个平面两两相交,可能相交于一点,也可能相交于一条直线,还可能相交于三条平行线,故选A.答案:A6.导学号96640036(2016安徽安庆高二期中)以下说法正确的是()A.若直线a不平行于平面α,则直线a与平面α相交B.直线a和b是异面直线,若直线c∥a,则c与b一定相交C.若直线a和b都和平面α平行,则a和b也平行D.若直线c平行直线a,直线b⊥a,则b⊥c解析:若直线a不平行于平面α,则直线a与平面α相交,或a⊂α,故A错误;若直线a和b是异面直线,若直线c∥a,则c与b相交或异面,故B错误;若直线a和b都和平面α平行,则a和b可能平行,可能相交,也可能异面,故C错误;若直线c平行直线a,直线b⊥a,则b⊥c,故D正确.故选D.答案:D7.已知平面α∥平面β,直线a⊂α,则直线a与平面β的位置关系为.解析:∵α∥β,∴α与β无公共点.∵a⊂α,∴a与β无公共点,∴a∥β.答案:a∥β8.已知直线a,平面α,β,且a∥α,a∥β,则平面α与β的位置关系是.解析:因为a∥α,a∥β,所以平面α与β相交(如图①)或平行(如图②).答案:相交或平行9.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.解析:如图,与平面ABB1A1平行的直线有6条:D1E1,E1E,ED,DD1,D1E,DE1.答案:610.导学号96640035下列命题正确的有.(填序号)①若直线与平面有两个公共点,则直线在平面内;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;⑤若直线l与平面α平行,则l与平面α内的直线平行或异面.解析:①显然是正确的;②中,直线l还可能与α相交,所以②是错误的;③中,直线l和平面α内过l与α交点的直线都相交而不是异面,所以③是错误的;④中,异面直线中的另一条直线和该平面的关系不能具体确定,它们可以相交,可以平行,还可以在该平面内,所以④是错误的;⑤中,直线l与平面α没有公共点,所以直线l与平面α内的直线没有公共点,即它们平行或异面,所以⑤是正确的.答案:①⑤11.如图,在长方体ABCD-A1B1C1D1中,面对角线B1D1与长方体的六个面之间的位置关系如何?解:∵B1∈平面A1B1C1D1,D1∈平面A1B1C1D1,∴B1D1⊂平面A1B1C1D1.∵B1∈平面BB1C1C,D1∉平面BB1C1C,∴直线B1D1∩平面BB1C1C=B1.同理直线B1D1与平面AA1B1B、平面AA1D1D、平面CC1D1D都相交.在平行四边形B1BDD1中,B1D1∥BD,B1D1与BD无公共点,∴B1D1与平面ABCD无公共点,∴B1D1∥平面ABCD.12.导学号96640037如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系,并证明你的结论.解:a∥b,a∥β.证明如下:由α∩γ=a知a⊂α,且a⊂γ,由β∩γ=b知b⊂β,且b⊂γ.∵α∥β,a⊂α,b⊂β,∴a,b无公共点.又∵a⊂γ,且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点.又a⊂α,∴a与β无公共点,∴a∥β.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部