2015-2016学年重庆一中高三(下)3月月考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分.1.已知集合M={x|x2+x﹣2<0},N={x|log2x<1},则M∩N=()A.(﹣2,1)B.(﹣1,2)C.(0,1)D.(1,2)2.若纯虚数z满足(1﹣i)z=1+ai,则实数a等于()A.0B.﹣1或1C.﹣1D.13.已知变量x,y的取值如表所示:x456y867如果y与x线性相关,且线性回归方程为,则的值为()A.1B.C.D.4.已知倾斜角为θ的直线l与直线m:x﹣2y+3=0垂直,则sin2θ=()A.B.C.D.5.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.6.设等差数列{an}的前n项和为Sn.若a5=5a3,则=()A.10B.9C.12D.57.过抛物线C:y2=4x的焦点F作直线l交抛物线C于A、B两点,若A到抛物线的准线的距离为4,则弦长|AB|的值为()A.8B.C.D.68.某几何体的三视图如图所示,则该几何体的表面积为()A.B.6C.3+D.9.我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.2B.4C.6D.810.如图,为了测量A、C两点间的距离,选取同一平面上B、D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为()km.A.7B.8C.9D.611.如图,F1、F2是双曲线=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4B.C.D.12.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),(,0),(0,﹣2),O为坐标原点,动点P满足||=1,则|++|的最小值是()A.﹣1B.﹣1C.+1D.+1二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)=lnx﹣ax2,且函数f(x)在点(2,f(2))处的切线的斜率是,则a=.14.x,y满足条件,则z=x﹣2y的最小值是.15.已知函数,则=.16.已知在三棱锥P﹣ABC中,PA⊥平面ABC,AB=AC=PA=2,且在△ABC中,∠BAC=120°,则三棱锥P﹣ABC的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.各项均为正数的数列{an}中,Sn是数列{an}的前n项和,对任意n∈N*,有.(1)求数列{an}的通项公式;(2)若数列{bn}是首项和公比为2的等比数列,求数列{an•bn}的前n项和Tn.18.某高校从2015年招收的大一新生中,随机抽取60名学生,将他们的2015年高考数学成绩(满分150分,成绩均不低于90分的整数)分成六段[90,100),[100,110)…[140,150),后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校2015年招收的大一新生共有960人,试估计该校招收的大一新生2015年高考数学成绩不低于120分的人数;(3)若用分层抽样的方法从数学成绩在[90,100)与[140,150]两个分数段内的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至少有1人在分数段[90,100)内的概率.19.如图所示,在四棱锥P﹣ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点.(Ⅰ)证明:BE⊥PA;(Ⅱ)若AD=2BC=2AB=4,求点D到平面PAC的距离.20.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.(1)求椭圆的方程;(2)过点E(﹣1,0)且不与坐标轴垂直的直线l交此椭圆于C,D两点,若线段CD的垂直平分线与x轴交于点M(x0,0),求实数x0的取值范围.21.已知函数.(Ⅰ)当a>0时,求函数f(x)的单调递减区间;(Ⅱ)当a=0时,设函数g(x)=xf(x)﹣k(x+2)+2.若函数g(x)在区间上有两个零点,求实数k的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线.(2)若,求的值.23.在直角坐标系xOy中,曲线M的参数方程为(α为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立坐...