柔性材料与可穿戴电子传感器前景资料报告——通信班何昌帮通过这个学期的学习我对柔性材料和电子传感器有了一些了解。一:柔性与柔性材料柔性材料的定义柔性英文为,也可解释为挠性,是相对刚性而言的一种物体特性。挠性是指物体受力后变形,作用力失去之后物体自身不能恢复原来形状的一种物理性质。而刚性物体受力后,在宏观来看其形状可视为没有发生改变。弹性是指物体受力后变形,作用力失去之后物体自身能恢复原来形状的一种物理性质。其侧重物体的变形结果,而挠性侧重物体自身性质。因而柔性材料是指可伸缩,弯曲,扭转,变形而不失去性能的材料。通过这一性能我们可以得到许多延展性及曲度很高的电子材料。在查阅资料的过程中我还了解到了一种与本课题有关的但是处于初步阶段的电子技术一一柔性电子技术。柔性材料的发展前景柔性电子可概括为是将有机无机材料电子器件制作在柔性可延性塑料或薄金属基板上的新兴电子技术,以其独特的柔性延展性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景,如柔性电子显示器、有机发光二极管、印刷、薄膜太阳能电池板、电子用表面粘贴等。与传统技术一样,制造工艺和装备也是柔性电子技术发展的主要驱动力。柔性电子制造技术水平指标包括芯片特征尺寸和基板面积大小,其关键是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性电子器件。柔性电子技术有可能带来一场电子技术革命,引起全世界的广泛关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为年世界十大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦•马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得年诺贝尔化学奖。西方发达国家纷纷制定了针对柔性电子的重大研究计划,如美国计划、日本计划、欧盟第七框架计划中和计划等,仅欧盟第七框架计划就投入数十亿欧元的研发经费,重点支持柔性显示器、聚合物电子的材料设计制造可靠性、柔性电子器件批量化制造等方面基础研究。在最近的年间,康奈尔大学、普林斯顿大学、哈佛大学、西北大学、剑桥大学等国际著名大学都先后建立了柔性电子技术专门研究机构,对柔性电子的材料、器件与工艺技术进行了大量研究。柔性电子技术同样引起了我国研究人员的高度关注与重视,在柔性电子有机材料制备、有机电子器件设计与应用等方面开展了大量的基础研究工作,并取得了一定进展。中国科学院长春应用化学研究所、中国科学院化学研究所、中国科学技术大学、华南理工大学、清华大学、西安电子科技大学、天津大学、浙江大学、武汉大学、复旦大学、南京邮电大学、上海大学等单位在有机光电(高)分子材料和器件、发光与显示、太阳能电池、场效应管、场发射、柔性电子表征和制备、平板显示技术、半导体器件和微图案加工等方面进行了颇有成效的研究。近年来,华中科技大学在封装和卷到卷制造、厦门大学在静电纺丝等方面取得了研究进展。在上也有着一些相关的文献。・二:可穿戴的电子传感器随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。传感器在人体健康监测方面发挥着至关重要的作用。近年来,人们已经在可穿戴可植入传感器领域取得了显著进步,例如利用电子皮肤向大脑传递皮肤触觉信息,利用三维微电极实现大脑皮层控制假肢,利用人工耳蜗恢复病人听力等。然而,实现柔性可穿戴电子传感器的高分辨、高灵敏、快速响应、低成本制造和复杂信号检测仍然是一个很大的挑战。柔性可穿戴电子传感器机械力信号转换有效地将外部刺激转化为电信号是柔性可穿戴电子传感器监测身体健康状况的关键技术。柔性可穿戴电子传感器的信号转换机制主要分为压阻、电容和压电三大部分。oRsfErtiir■WithFuKrnnTAPi^oFEsiPitkilyCij^cifiiincePi&wdKiriciIriboeleclricit压阻:压阻传感器可以将外力转换成电阻的变化(与施加压力的平方根成正比),进而可以方便地用电...