1.1.3集合的基本运算第1课时并集、交集基础达标1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=().A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}解析N={x|x2≤x}={x|0≤x≤1}.又M={-1,0,1},∴M∩N={0,1}.答案B2.若集合A={x||x|≤1},B={x|x≥0},则A∩B=().A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅解析∵A={x|-1≤x≤1},又B={x|x≥0},∴A∩B={x|-1≤x≤1}∩{x|x≥0}={x|0≤x≤1}.答案C3.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为().A.0B.1C.2D.4解析∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4.答案D4.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集的个数是________.解析∵M={0,1,2,3,4},N={1,3,5},∴M∩N={1,3}.∴M∩N的所有子集为∅,{1},{3},{1,3},共4个.答案45.已知集合A={x|-3≤x≤4},B={x|x<-2或x>5},则A∪B=________.解析将-3≤x≤4与x<-2或x>5在数轴上表示出来由图可得:A∪B={x|x≤4或x>5}.答案{x|x≤4或x>5}6.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.解析∵A∩B={x|a≤x≤2}={2},∴a=2.答案27.定义A*B={x|x=x1+2x2,x1∈A,x2∈B},若A={1,2,3},B={1,2}.(1)求A*B;(2)求A∩(A*B)∪B.解(1)∵A={1,2,3},B={1,2},∴A*B={x|x=x1+2x2,x1∈A,x2∈B}={3,4,5,6,7}.(2)A∩(A*B)∪B={1,2,3}∩{3,4,5,6,7}∪{1,2}={3}∪{1,2}={1,2,3}.能力提升8.已知集合A={(x,y)|y=2x+1},B={x|y=x-1},则A∩B=().A.{-2}B.{(-2,-3)}C.∅D.{-3}解析由于A是点集,B是数集,∵A∩B=∅.答案C9.设集合A={-2},B={x|ax+1=0,a∈R},若A∪B=A,则a=________.解析∵A∪B=A,∴B⊆A.∵A={-2}≠∅,∴B=∅或B≠∅.当B=∅时,方程ax+1=0无解,此时a=0.当B≠∅时,此时a≠0,则B=,∴-∈A,即有-=-2,得a=.综上,得a=0或a=.答案0或10.集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若∅A∩B,A∩C=∅,求a的值.解由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B.于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由根与系数之间的关系知:解之得a=5.(2)由A∩B∅⇒A∩B≠∅,又A∩C=∅,得3∈A,2∉A,-4∉A.由3∈A得32-3a+a2-19=0,解得a=5或a=-2.当a=5时,A={x|x2-5x+6=0}={2,3},与2∉A矛盾;当a=-2时,A={x|x2+2a-15=0}={3,-5},符合题意.