2.1随机抽样2.1.1简单随机抽样一、基础达标1.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案B解析逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.2.(·济南高一检测)用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“”第一次被抽到的可能性“,”第二次被抽到的可能性分别是()A.,B.,C.,D.,答案A解析简单随机抽样中每个个体被抽取的机会均等,都为.3.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是()A.总体是240名B.个体是每一个学生C.样本是40名学生D.样本容量是40答案D解析在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.因此选D.4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.5.采用简单随机抽样,从6个标有序号A、B、C、D、E、F的球中抽取1个球,则每个球被抽到的可能性是________.答案解析每个个体抽到的可能性是一样的.6.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥每个运动员被抽到的机会相等.答案④⑤⑥解析①2000名运动员不是总体,2000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.7.从30个灯泡中抽取10个进行质量检测,试说明利用随机数表法抽取这个样本的步骤.解第一步,将30个灯泡编号:00,01,02,03,…,29;第二步,在随机数表中任取一个数作为开始,如从第9行、第35列的0开始(见课本随机数表);第三步,从0开始向右读,每次读取两位,凡不在00~29中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到00,13,02,09,27,17,08,28,18,07这10个编号,则这10个编号所对应的灯泡就是要抽取的对象.二、能力提升8.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03…,,100;②001,002,003…,,100;③00,01,02…,,99.其中正确的序号是()A.①②B.①③C.②③D.③答案C解析根据随机数表的要求,只有编号时数字位数相同,才能达到随机等可能抽样.9.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.B.k+m-nC.D.不能估计答案C解析设参加游戏的小孩有x人,则=,x=.10.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.答案120解析=25%,∴N=120.11.某合资企业有150名职工,要从中随机地抽出20人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程.解(抽签法)先把150名职工编号:1,2,3,…,150,把编号写在小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.(随机数表法)第一步,先把150名职工编号:001,002,003,…,150.第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下:086,027,079,050,074,146,148,093,077,119,022,025,0...