3.1随机事件的概率3.1.1随机事件的概率一、基础达标1.下列事件中,是随机事件的有()①在一条公路上,交警记录某一小时通过的汽车超过300辆.②若a为整数,则a+1为整数.③发射一颗炮弹,命中目标.④检查流水线上一件产品是合格品还是次品.A.1个B.2个C.3个D.4个答案C解析当a为整数时,a+1一定为整数,是必然事件,其余3个均为随机事件.2.(·洛阳高一检测)下列事件中,不可能事件为()A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边答案C解析若两内角的和小于90°,则第三个内角必大于90°,故不是锐角三角形,∴C为不可能事件,而A、B、D均为必然事件.3.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为()A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品答案C解析25件产品中只有2件次品,所以不可能取出3件都是次品.4“.连续抛掷两枚质地均匀的骰子,”记录朝上的点数,该试验的结果共有()A.6种B.12种C.24种D.36种答案D解析试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.5.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是=;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是()A.0B.1C.2D.3答案A解析由频率与概率之间的联系与区别知,①②③均不正确.6.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.答案500解析设进行了n次试验,则有=0.02,得n=500,故进行了500次试验.7.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数n554496071352017190男婴数nA2883497069948892(1)计算男婴出生的频率(保留4位小数);(2)这一地区男婴出生的频率是否稳定在一个常数上?解(1)男婴出生的频率依次是:0.5200,0.5173,0.5173,0.5173.(2)各个频率均稳定在常数0.5173上.二、能力提升8.下列说法正确的是()A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定答案C解析必然事件发生的概率为1,不可能事件发生的概率为0,所以任何事件发生的概率总在[0,1]之间,故A错,B、D混淆了频率与概率的概念,也错.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:落在桌面的数字12345频数3218151322则落在桌面的数字不小于4的频率为________.答案0.35解析落在桌面的数字不小于4,即4,5的频数共13+22=35.所以频率==0.35.10.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k次或第k次之前能首次摸出红球,则k的最小值为________.答案16解析至少需摸完黑球和白球共15个.11.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.解(1)结果:红球,白球;红球,黑球;白球,黑球.(2)结果:1-3=-2,3-1=2,1-6=-5,6-1=5,1-10=-9,10-1=9,3-6=-3,6-3=3,3-10=-7,10-3=7,6-10=-4,10-6=4.即试验的结果为:-2,2,-5,5,-9,9,-3,3,-7,7,-4,4.三、探究与创新12.(1)某厂一批产品的次品率为,问任意抽取其中的10件产品是否一定会发现一件次品?为什么?(2)10件产品的次品率为,问这10件中必有一件次品的说法是否正确?为什么?解(1)不一定,此处次品率指概率.从概率的统计定义看,当抽取件数相...