第十二章矩阵位移法【例12-1】图a所示连续梁,EI=常数,只考虑杆件的弯曲变形。分别用位移法和矩阵位移法计算。图12-1解:(1)位移法解?基本未知量和基本结构的确定用位移法解的基本结构如图c所示。这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。?位移法基本方程的建立000333323213123232221211313212111PPPRKKKRKKKRKKK将上式写成矩阵形式000321321333231232221131211PPPRRRKKKKKKKKK?系数项和自由项计算(须绘出单位弯矩图和荷载弯矩图)由图d,结点力矩平衡条件0M,得lEIK411,lEIK221,031K由图e,结点力矩平衡条件0M,得lEIK212,lEIlEIlEIK84422,lEIK232由图f,结点力矩平衡条件0M,得013K,lEIK223,lEIlEIlEIK84433由图g,结点力矩平衡条件0M,得81PlRp,82PlRP,03PR将系数项和自由项代入位移法基本方程,得0000118820282024321PllEI?解方程,得14114162321EIPl?由叠加法绘弯矩图,如图h所示。(2)矩阵位移法解?对单元和结点编号(图a)本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。若用后处理法原始结构刚度阵为44阶;用先处理法结构刚度阵为33阶(已知角位移04)。下面采用先处理法来说明矩阵位移法计算过程。单元标准形式为(图b))(ek)()()()()(4224ejjejieijeiiekkkklEIlEIlEIlEI?求局部坐标系下的单元刚度矩阵)(ek?求整体坐标下的单元刚度矩阵TkTkeTe)()(,因连续梁的局部坐标和整体坐标是一致的,所以有)()(eekk,得(注:本题用先处理法换码))1(k214224)1(lEI,)2(k324224)2(lEI,)3(k034224)3(lEI?按“对号入座”规则集成总刚,得K321820282024lEI?形成荷载列阵P(1)计算单元固端列阵)1(FF218181Pl,)2(FF324141Pl,)3(FF034141Pl(2)将单元固端列阵反号,并按“对号入座”规则送入荷载列阵P(本题结点荷载为零)P=EDPP=321081814141418181000PlPl?将结构刚度矩阵及荷载列阵代入矩阵位移法方程PK,得08181820282024321PllEI?解方程,得14114162321EIPl?计算杆端弯矩)()()()()()()()()()(eeeFeeeFeeeFeTkFkFkFF)1(F=45020838524165252416411416422481812PlPlPlEIPllEIPl)2(F=544520841441610410441614416422441412PlPlPlEIPllEIPl)3(F=51542082441610410441601416422441412PlPlPlEIPllEIPl得各单元杆端弯矩后,再叠加上一相应简支弯矩图即得各单元弯矩图。将各单元弯矩图组合在一起,得整个结构的弯矩图(图h)。小结:通过本题的计算可看到:(1)基本未知量和基本结构。位移法与矩阵位移法二者都是以结点位移为基本未知量,以单根杆件(单元)为计算对象。位移法为方便计算,有三类杆件;而矩阵位移法只有一类杆件,即两端固定等截面梁。(2)刚度矩阵与荷载列阵的形成。位移法是用单位弯矩图和荷载弯矩图并由结点的平衡条件计算系数项和自由项的,而后形成刚度矩阵与荷载列阵的;而矩阵位移法是以单元杆端刚度元素、单元杆端荷载元素,按“对号入座”规则形成刚度矩阵与荷载列阵的。矩阵位移法基本方程的建立,归结为两个问题:一是根据结构的几何和弹性性质建立整体刚度矩阵K,二是根据受载情况形成整体荷载列阵P。(3)有(1)、(2)可知,二者的关系是:“原理同源,作法有别”。因此矩阵位移法不是一个新方法,它是新的计算工具(电子计算机)与传统力学原理(位移法)相结合的产物。【例12-2】试求图a所示结构原始刚度矩阵中的子块22K,已知单元①的整体坐标的单元刚度矩阵如图c所示。图12-2解:本题每个结点有两个基本位知量(竖向线位移和角位移),如图b所示。单元刚度矩阵为44阶(图c)。由图d所示子块形式,22K的元素应为单元①的j端元素(图c右下角子块)与单元②i端元素(图c左上角子块乘以2)之和,即)2(22)1(22)2()1(22KKKKKiijj60000360036002164000072007200144200003600360072【例12-3】只计弯曲变形时,用先处理法写出结构刚度矩阵K。(设EI=1)图12-3解:由图d及先处理法结点位移编号图c写出各单元刚度矩阵,并按“对号入座”规则集成整体刚度矩阵。)1(k210045.125.15.175.05.175.025.145.15.175.05.175.0,)2(k30210.25.10.15.15.15.15.15.10.15.10.25.15.15.15.15.1)3(k40306...