3.1.3概率的基本性质(人教A版数学必修三)授课人:魏学东一、教学目标:1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B)∪;3)若事件A与B为对立事件,则AB∪为必然事件,所以P(AB)=P(A)+P(B)=1∪,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。二、重点与难点:概率的加法公式及其应用,事件的关系与运算。三、学情分析:目前,学生的认知水平是:已经掌握了集合的概念及关系,概率的定义及意义。但本校学生双基的掌握相对来说比较薄弱,学习能力也较差。四、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:幻灯片五、教学设计:创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?新课探究:阅读课本P119-120总结:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,AB∪为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(AB)=P(A)+∪P(B);(5)若事件A与B为对立事件,则AB∪为必然事件,所以P(AB)=P(A)+P(B)=1∪,于是有P(A)=1—P(B).例题分析:例1、一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).课堂练习1、从1,2,…,9中任取两个数,其中(1)恰有一个是偶数和恰有一个是奇数;(2)至少有一个是奇数和两个数都是奇数;(3)至少有一个奇数和两个都是偶数;(4)至少有一个偶数和至少有一个奇数。在上述事件中是对立事件的是()A.(1)B.(2)(4)C.(3)D.(1)(3)2、判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由。从40张扑克牌(红桃,黑桃,方块,梅花点数从1-10各10张)中,任取一张。(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。例题分析例2、抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=0.5,P(B)=0.5,求出“出现奇数点或偶数点”.分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.解:记“出现奇数点或偶数点”为事件C,则C=AB,∪因为A、B是互斥事件,所以P(C)=P(A)+P(B)=0.5+0.5=1答:出现奇数点或偶数点的概率为1课堂练习3、如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是0.25,取到方块(事件B)的概率是0.25,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?分析:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1—P(C).解:(1)P(C)=P(A)+P(B)=0.5(2)P(D)=1—P(C)=0.54、甲,乙两人下棋,和棋的概率为1/2,乙获...