2015-2016学年湖北省襄阳市高一(下)期末数学试卷一、选择题1.2sin15°cos15°=()A.B.C.D.2.不等式x2﹣3x﹣4>0的解集为()A.{x|x<﹣1或x>4}B.{x|x≤﹣1或x≥4}C.{x|﹣1<x<4}D.{x|﹣1≤x≤4}3.若b>a>0,则下列不等式中一定成立的是()A.>b>>aB.b>>>aC.b>a>>D.b>>>a4.已知tan(α+)=2,tan(β﹣)=﹣3,则tan(α﹣β)=()A.1B.﹣C.D.﹣15.已知等差数列{an}的前n项和为Sn,a1=﹣11,a5+a6=﹣4,Sn取得最小值时n的值为()A.6B.7C.8D.96.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()A.B.4C.D.37.若不等式x2﹣ax+a>0在(1,+∞)上恒成立,则实数a的取值范围是()A.[0,4]B.[4,+∞)C.(﹣∞,4)D.(﹣∞,4]8.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,且第一排和最后一排的距离为5米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,要使国歌结束时国旗正好升到旗杆顶部,升旗手升旗的速度应为()A.0.1米/秒B.0.3米/秒C.0.5米/秒D.0.7米/秒9.已知数列{an}对任意的p,q∈N*满足ap+q=ap+aq,且a2=﹣6,那么a10等于()A.﹣165B.﹣33C.﹣30D.﹣2110.已知a,b,c均为直线,α,β为平面.下面关于直线与平面关系的命题:(1)任意给定一条直线a与一个平面α,则平面α内必存在与a垂直的直线;(2)任意给定的三条直线a,b,c,必存在与a,b,c都相交的直线;(3)α∥β,a⊂α,b⊂β,必存在与a,b都垂直的直线;(4)α⊥β,α∩β=c,a⊂α,b⊂β,若a不垂直c,则a不垂直b.其中真命题的个数为()A.1B.2C.3D.411.若a>﹣1,则的最小值是()A.1B.2C.3D.412.已知数列:,,,,,,,,,,…,依它的前10项的规律,这个数列的第2016项a2016=()A.B.C.D.二、填空题.13.已知数列{an}是等比数列,a9是1和3的等差中项,则a2a16=.14.将长、宽分别为4和3的长方形ABCD沿对角线AC折起,得到四面体A﹣BCD,则四面体A﹣BCD的外接球的体积为.15.已知函数f(x)=(sinx+cosx)cosx,则f(x)的最大值是.16.下列命题:①设a,b是非零实数,若a<b,则ab2<a2b;②若a<b<0,则>;③函数y=的最小值是2;④若x、y是正数,且+=1,则xy有最小值16.其中正确命题的序号是.三、解答题.17.已知数列{an}是各项均为正的等比数列,a1=2,a2+a3=24;数列{bn}是公差不为0的等差数列,b1,b2,b5成等比数列,b1+b2+b5=13.(1)求数列{an}、{bn}的通项公式;(2)求数列{an﹣bn}的前n项和Sn.18.已知函数f(x)=sin(x+)+sin(x﹣)+cosx﹣1.(1)求使f(x)≥0成立的x的取值集合;(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知A为锐角,a=3,c=6,f(A)是函数f(x)在[0,]上的最大值,求△ABC的面积.19.如图,四棱锥V﹣ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,E、F分别为AB、VC的中点.(1)求证:EF∥平面VAD;(2)求二面角V﹣AB﹣C的大小.20.在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC是正三角形,D是BC的中点,M、N分别为线段PB、PC上的点,MN∥BC.(1)求证:平面PAD⊥平面PBC;(2)若PA=AD,当点A到直线MN的距离最小时,求三棱锥P﹣AMN与三棱锥P﹣ABC的体积之比.21.已知数列{an}的各项均为正,a1=2,Sn是它的前n项和,且Sn=pan2+2pan(n∈N*).(1)求数列{an}的通项公式;(2)求数列{an•2n}的前n项和Tn;(3)求证:>.22.为了美化校园环境,学校打算在兰蕙广场上建造一个绚丽多彩的矩形花园,中间有三个完全一样的矩形花坛,每个花坛面积均为294平方米,花坛四周的过道均为2米,如图所示,设矩形花坛的长为x,宽为y,整个矩形花园面积为S.(1)试用x,y表示S;(2)为了节约用地,当矩形花坛的长为多少米时,新建矩形花园占地最少,占地多少平米?2015-2016学年湖北省襄阳市高一(下)期末数学试卷参考答案与试题解析一、选择题1.2sin15°...