2017年广西桂林高考数学模拟试卷(文科)(5月份)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={x|(x+2)(x﹣1)<0},N={x|x+1<0},则M∩N=()A.(﹣1,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)2.已知复数z=1﹣i,则=()A.2B.﹣2C.2iD.﹣2i3.设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.104.已知函数f(x)=,则f(2+log32)的值为()A.﹣B.C.D.﹣545.“sinα=”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1D.(x﹣2)2+(y﹣2)2=17.已知双曲线,抛物线y2=2px(p>0),若抛物线的焦点到双曲线的渐近线的距离为3,则p=()A.B.5C.D.108.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?()A.5B.4C.3D.29.如图是某算法的程序框图,则程序运行后输出的结果是()A.2B.3C.4D.510.在区间[0,1]上任意取两个实数a,b,则函数在区间[﹣1,1]上有且仅有一个零点的概率为()A.B.C.D.11.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+1212.已知函数f(x)=cosxsin2x,下列结论中错误的是()A.y=f(x)的图象关于(π,0)中心对称B.y=f(x)的图象关于x=对称C.f(x)的最大值为D.f(x)既是奇函数,又是周期函数二、填空题:(本大题共4小题,每小题5分,共20分.请将答案填写在答题卷的横线上.)13.在等差数列{an}中,若a1+a5+a9=,则tan(a4+a6)=.14.若实数x,y满足不等式组,则x2+y2的最小值为.15.在△ABC中,已知AB=3,BC=2,D在AB上,=,若•=3,则AC的长是.16.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=()x.若存在x0∈[,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.向量,,已知,且有函数y=f(x).(1)求函数y=f(x)的周期;(2)已知锐角△ABC的三个内角分别为A,B,C,若有,边BC=,sinB=,求AC的长及△ABC的面积.18.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.19.如图,AA1、BB1为圆柱OO1的母线(母线与底面垂直),BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥平面CBB1.(1)证明:AC⊥平面AA1B1B;(2)证明:DE∥平面ABC;(3)求四棱锥C﹣ABB1A1与圆柱OO1的体积比.20.如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设=λ.(1)若点P的坐标为(1,),且△PQF2的周长为8,求椭圆C的方程;(2)若PF2垂直于x轴,且椭圆C的离心率e∈[,],求实数λ的取值范围.21.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.四、选修4-4:坐标系与参数方程22.已知曲线C的极坐标方程为ρ=2cosθ,直线l的极坐标方程为ρsin(θ+)=m.(I)求曲线C与直线l的直角坐标方程;(II)若...