高二数学两个平面垂直的判定和性质知识精讲人教版【基础知识精讲】1.二面角半平面:一个平面内的一条直线,把这个平面分为两部分,其中的每一部分都叫做半平面.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB,面为α,β的二面角,记作二面角α—AB—β,如果棱用a表示,则记作二面角α—a—β,有时也可以全用大写拉丁字母表示,例平面PAB与平面QAB形成的二面角记作P—AB—Q.注意:平面几何中可以把角理解为一个旋转量,同样一个二面角也可以看作以一个半平面以其棱为轴旋转而成的.2.二面角的平面角平面与平面的位置关系,总的来说只有相交或平行两种.为了对相交平面的相互位置作进一步的对探讨,有必要研究二面角的大小问题.如图,在二面角α—a—β的棱a上任取一点O,在半平面α和β内,从点O分别作垂直于棱a的射线OA,OB,射线OA和OB组成∠AOB,在棱a上另取一点O′,按同样方法作∠A′O′B′.因为OA和O′A′,OB和O′B′都垂直于棱a,所以∠AOB和∠A′O′B′的两边分别平行且方向相同,因此∠AOB=∠A′O′B′,可见∠AOB的大小与点O在棱上的位置无关.二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.注意:①它是一个“平面角”,因此两边必须在同一平面内.②二面角的平面角的两边都必须与棱垂直.画二面角和它的平面角,最常见的两种形式:(1)直立式(2)平卧式用心爱心专心二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度.特别地:平面角是直角的二面角叫做直二面角.二面角Q的范围是[0,π]3.两个平面垂直的判定(i)定义:两个平面所成二面角为直二面角;如果α与β垂直,记作α⊥β,画两个互相垂直的平面,把直立平面的竖边画成和水平平面的横边垂直,如图:(ii)两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.AB⊥β,ABαα⊥β.建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直,就是依据这个定理.(iii)垂直于平行平面中的一个平面必垂直于另一个平面.α∥β,r⊥αr⊥β说明平面与平面的垂直问题可以转化为直线与平面的垂直问题,即线面垂直可以导致面面垂直.4.两个平面垂直的性质(i)两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面.α⊥β,α∩β=a,bα,b⊥ab⊥β(ii)过一平面内一点而垂直于另一平面的直线必在这平面内.(iii)相交平面同时垂直于第三个平面,则交线垂直于第三平面.(iv)过不垂直于平面的一直线有且只有一个平面与已知平面垂直.从两个平面垂直的性质可以看出面面垂直可以得出线面垂直.5.两条异面直线上两点的距离公式设a、b是异面直线,AA′是a、b的公垂线,A′∈b,A∈b,AA′=d.E∈a,F∈b,=m,FA=n.且a、b成θ角,则EF=.说明(i)两条异面直线公垂线的存在性.(ii)可证明两条异面直线的距离是异面直线上两点的距离.用心爱心专心(iii)可以解决分别在二面角的面内两点的距离问题.【重点难点解析】二面角及其平面角是本节重点概念,应熟练掌握找平面角的各种基本办法,两个平面垂直的判定定理及性质定理,是本节的两个重要定理,应弄清定理内容,灵活使用定理处理综合问题.如何选取恰当位置作出二面角的平面角是本节的难点,应在掌握找平面角的各种方法之后,通过加强练习达到灵活熟练的程度.同时,异面直线上两点间距离的计算也是本节的一个难点.例1直线a、b是异面直线,a⊥平面α,b⊥平面β,a⊥b,求证:α⊥β.证明过b上任意一点作直线a′,使a∥a′. a⊥b,∴a′⊥b.设相交直线a′、b确定一个平面γ,γ∩β=c. b⊥β,cβ,∴b⊥c.在平面γ内,b⊥c,b⊥a′,∴a′∥c.∴a∥a′∥c.又 a⊥α,∴c⊥α,cβ,∴β⊥α例2在三棱锥S—ABC中,∠ASB=∠BSC=60°,∠ASC=90°,且SA=SB=SC,求证:平面ASC⊥平面ABC.证明取AC的中点O,连SO、BO,由已知,得ΔSAB、ΔSBC都是正三角形.∴BC=AB=a,SA=SC=a,又SO⊥AC,BO⊥AC,∴∠SOB就是二面角S...