高二数学人教实验B版<文>导数的概念、几何意义及公式同步练习(答题时间:50分钟)一、选择题(本大题共6小题,每小题5分,共30分)1.已知函数42)(2xxf的图象上一点(1,2)及邻近一点)2,1(yx,则xy等于()A.4B.x4C.x24D.2)(24x2.已知曲线2212xy上一点P(1,23),过点P的切线的倾斜角为()A.30B.45C.135D.1653.如果质点按规律3ts运动,则在3t时的瞬时速度为()A.3B.9C.27D.274.曲线xy在点P(4,2)处的切线方程为()A.044yxB.044yxC.0124yxD.0124yx5.抛物线2xy上何处的切线与直线013yx的夹角是45()A.)1,1(B.)161,41(C.(1,1)D.)1,1(与)161,41(6.过点P(2,1)且与曲线2432xxy在点M(1,1)处的切线平行的直线方程是()A.042yxB.042yxC.042yxD.042yx二、填空题(本题共4小题,每小题5分,共20分)7.设)(xf在点0x处可导,a为常数,则xxaxfxaxfx)()(lim000=。8.函数xy1的导数'y=________________。9.函数xxxf11log)(2的导数)x('f=________________。10.曲线2xx)x(f3在P0处的切线平行于直线1x4y,则P0点的坐标为。三、解答题(本大题共4题,共50分)11.利用导数定义求函数xy1在1x处的导数。12.已知点),1(cA为曲线baxxy23上的一点,曲线在A点处的切线方程为dxy,曲线斜率为1的切线有几条?它们之间的距离是多少?13.已知抛物线cbxaxy2(0a),通过点(1,1),且在点(1,2)处与直线3xy相切,求cba,,的值。14.已知函数321cos34)(23xxxf,其中Rx,为参数,且20用心爱心专心1(1)当0cos时,判断)(xf是否有极值;(2)要使函数)(xf的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数)(xf在区间(aa,12)内都是增函数,求实数a的取值范围。用心爱心专心2【试题答案】1.C解析:22)(2424)1(2)2()1(xxxxfy,∴xxy242.B解析:1)121(lim)2121(]2)1(21[lim0220xxxkxx,∴1tan,45。3.D解析: 333)3(ts27)()(33932732ttt32)()(927ttt∴2)(927ttts∴tst0lim=274.B解析:41)24(lim24limlim000xxxxxxyxxx∴曲线在点P(4,2)处的切线方程为)4(412xy,即044yx5.D解析:设切线斜率为k,则1313kk,得2k或21k又 x2'y,令22x或212x,得1x或41x∴切点为)1,1(与)161,41(6.B解析: 4x6'y,∴2|'y1x所求直线的斜率为2∴所求的直线方程为)1(22xy,即042yx7.解:xxaxfxaxfx)()(lim000=xxaxfxfxfxaxfx)()()()(lim00000=xaxfxaxfaxaxfxaxfaxaxa)()(lim)()(lim000000=)()(00xfaxfa=)(20xfa8.解析: xy1用心爱心专心3∴220x0x0xx1xxx1limxx1xx1limxylim'y9.解析:)]'x1(log21)x1(log21[)'x1x1log21()x('f2221xelog)x1(2elog)x1(2elog222210.设切点为0(,)Pab,'2'2()31,()314,1fxxkfaaa,把1a,代入到3()2fxxx=+-得4b;把1a,代入到3()2fxxx=+-得0b,所以P0点的坐标为(1,0)和(1,4)11.解:xxxy111111∴)11(11111xxxxxxy∴21)11(11limlim00xxxyxx即21|'y1x∴函数xy1在1x处的导数为2112.解:由ax2x3)x('f2,则a23)1('f,由切线斜率为1,则123a,即1a,此时x2x3)x('f2,令1232xx,解得1x或31x,故已知曲线斜率为1的切线有两条。由A点在曲线上,则bbc11,过点A的切线方程为1xcy,即1cxy,故1cd。当31x时,cy23...