电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学用二分法求方程的近似解课件人教版必修一VIP免费

高中数学用二分法求方程的近似解课件人教版必修一_第1页
1/13
高中数学用二分法求方程的近似解课件人教版必修一_第2页
2/13
高中数学用二分法求方程的近似解课件人教版必修一_第3页
3/13
13.1.23.1.2用二分法用二分法求方程的近似解求方程的近似解知识探究(一):二分法的概念思考:从某水库闸房到防洪指挥部的某一处电话线路发生了故障。这是一条10km长的线路,如何迅速查出故障所在?如图,设闸门和指挥部的所在处为点A,B,BAC6.这样每查一次,就可以把待查的线路长度缩减一半1.首先从中点C查2.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段3.再到BC段中点D4.这次发现BD段正常,可见故障在CD段5.再到CD中点E来看DE函数f(x)=lnx+2x-6在区间(2,3)内有零点如何找出这个零点?请看下面的表格:区间端点的符号中点的值中点函数值的符号(2,3)f(2)<0,f(3)>02.5f(2.5)<0(2.5,3)f(2.5)<0,f(3)>02.75f(2.75)>0(2.5,2.75)f(2.5)<0,f(2.75)>02.625f(2.625)>0(2.5,2.625)f(2.5)<0,f(2.625)>02.5625f(2.5625)>0(2.5,2.5625)f(2.5)<0,f(2.5625)>02.53125f(2.53125)<0(2.53125,2.5625)f(2.53125)<0,f(2.5625)>02.546875f(2.546875)>0(2.53125,2.546875)f(2.53125)<0,f(2.546875)>02.5390625f(2.5390625)>0(2.53125,2.5390625)f(2.53125)<0,f(2.5390625)>02.53515625f(2.53515625)>0表续对于在区间[a,b]上连续不断且f(a).f(b)<0的函数y=f(x),通过不断的把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection)用二分法求函数f(x)零点近似值的步骤如下:1、确定区间[a,b],验证f(a).f(b)<0,给定精确度ε;2、求区间(a,b)的中点x1,3、计算f(x1)若f(x1)=0,则x1就是函数的零点;若f(a).f(x1)<0,则此时零点x0(a,x∈1)若f(x1).f(b)<0,则此时零点x0(x∈1,,b)4、判断是否达到精确度ε,即若|a-b|<ε则得到零点近似值a(或b),否则重复2~4例2借助计算器或计算机用二分法求方程2x+3x=7的近似解(精确度0.1)解:原方程即2x+3x=7,令f(x)=2x+3x-7,用计算器作出函数f(x)=2x+3x-7的对应值表和图象如下:x012345678f(x)-6-2310214075142273函数未命名.gsp图象因为f(1)·f(2)<0所以f(x)=2x+3x-7在(1,2)内有零点x0,取(1,2)的中点x1=1.5,f(1.5)=0.33,因为f(1)·f(1.5)<0所以x0∈(1,1.5)取(1,1.5)的中点x2=1.25,f(1.25)=-0.87,因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5)同理可得,x0∈(1.375,1.5),x0∈(1.375,1.4375),由于|1.375-1.4375|=0.0625〈0.1所以,原方程的近似解可取为1.4375思考:对下列图象中的函数,能否用二分法求函数零点的近似值?为什么?xyoxyo不行,因为不满足f(a)*f(b)<0借助计算器或计算机,用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解(精确度0.1)1.二分法的定义;2.用二分法求函数零点近似值的步骤。3.作业:p100第2题

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学用二分法求方程的近似解课件人教版必修一

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部