2.2.2双曲线的简单几何性质[A基础达标]1.下面双曲线中有相同离心率,相同渐近线的是()A.-y2=1,-=1B.-y2=1,y2-=1C.y2-=1,x2-=1D.-y2=1,-=1解析:选A.B中渐近线相同但e不同;C中e相同,渐近线不同;D中e不同,渐近线相同.故选A.2.若双曲线-=1(a>0)的离心率为2,则a等于()A.2B.C.D.1解析:选D.因为c=,所以==2,所以a=1.3.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为()A.y2-3x2=36B.x2-3y2=36C.3y2-x2=36D.3x2-y2=36解析:选A.椭圆4x2+y2=64即+=1,焦点为(0,±4),离心率为,所以双曲线的焦点在y轴上,c=4,e=,所以a=6,b2=12,所以双曲线方程为y2-3x2=36.4.已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.-y2=1B.x2-=1C.-=1D.-=1解析:选A.由题意得c=,=,则a=2,b=1,所以双曲线的方程为-y2=1.5.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.-=1B.-=1C.-=1D.-=1解析:选A.因为双曲线-=1的渐近线方程为y=±x,圆C的标准方程为(x-3)2+y2=4,所以圆心为C(3,0).又渐近线方程与圆C相切,即直线bx-ay=0与圆C相切,所以=2,所以5b2=4a2.①又因为-=1的右焦点F2(,0)为圆心C(3,0),所以a2+b2=9.②由①②得a2=5,b2=4.所以双曲线的标准方程为-=1.6.中心在原点,实轴在x轴上,一个焦点为直线3x-4y+12=0与坐标轴的交点的等轴双曲线方程是________.解析:由双曲线的实轴在x轴上知其焦点在x轴上,直线3x-4y+12=0与x轴的交点坐标为(-4,0),故双曲线的一个焦点为(-4,0),即c=4.设等轴双曲线方程为x2-y2=a2,则c2=2a2=16,解得a2=8,所以双曲线方程为x2-y2=8.答案:x2-y2=817.已知点(2,3)在双曲线C:-=1(a>0,b>0)上,C的焦距为4,则它的离心率为________.解析:由题意知-=1,c2=a2+b2=4得a=1,b=,所以e=2.答案:28.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为________.解析:设双曲线的标准方程为-=1(a>0,b>0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l的方程为l:x=c或x=-c,代入-=1得y2=b2=,所以y=±,故|AB|=,依题意=4a,所以=2,所以=e2-1=2,所以e=.答案:9.求以椭圆+=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.解:椭圆的焦点F1(-,0),F2(,0),即为双曲线的顶点.因为双曲线的顶点和焦点在同一直线上,所以双曲线的焦点应为椭圆长轴的端点A1(-4,0),A2(4,0),所以c=4,a=,所以b==3,故所求双曲线的方程为-=1.实轴长为2a=2,虚轴长为2b=6,离心率e==,渐近线方程为y=±x.10.过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,求双曲线C的离心率.解:如图所示,不妨设与渐近线平行的直线l的斜率为,又直线l过右焦点F(c,0),则直线l的方程为y=(x-c).因为点P的横坐标为2a,代入双曲线方程得-=1,化简得y=-b或y=b(点P在x轴下方,故舍去),故点P的坐标为(2a,-b),代入直线方程得-b=(2a-c),化简可得离心率e==2+.[B能力提升]11.已知双曲线-=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=1解析:选D.根据圆和双曲线的对称性,可知四边形ABCD为矩形.双曲线的渐近线方程为y=±x,圆的方程为x2+y2=4,不妨设交点A在第一象限,由y=x,x2+y2=4,得xA=,yA=,故四边形ABCD的面积为4xAyA==2b,解得b2=12,故所求的双曲线方程为-=1,故选D.12.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A.B.C.D.解析:选A.由题意知a2=2,b2=1,...