2016年湖南省长沙市高考数学一模试卷(文科)一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3B.﹣iC.1D.﹣12.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1]C.[﹣1,1]∪[2,+∞)D.(﹣2,1]3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B.圆锥C.棱锥D.棱柱4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.an=(﹣1)n﹣1+1B.an=C.an=2sinD.an=cos(n﹣1)π+16.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:p(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数的单调递增区间是()A.B.C.D.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8xB.x2=8yC.y2=4xD.x2=4y10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1B.2和﹣1C.1和﹣1D.2和﹣211.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7B.0.75C.0.8D.0.912.已知函数f(x)=ex,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为_______.14.记等差数列{an}的前n项和为Sn,若S3=2a3,S5=15,则a2016=_______.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.18.空气质量指数(AirQualityIndex,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.20.已知椭圆C1:+=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.[选修4-4:坐标系与参...