2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.回归分析中,相关指数R2的值越大,说明残差平方和()A.越小B.越大C.可能大也可能小D.以上都不对2.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.5763.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%4.在极坐标系中,曲线关于()A.直线θ=对称B.直线θ=对称C.点对称D.极点对称5.若直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,则实数k+m=()A.﹣1B.1C.0D.26.设(5x﹣)n的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N=56,则展开式中常数项为()A.5B.15C.10D.207.设等差数列{an}的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=()A.3B.4C.5D.68.函数的图象沿x轴向右平移a个单位(a>0),所得图象关于y轴对称,则a的最小值为()1A.πB.C.D.9.已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13B.15C.19D.2110.两球O1和O2在棱长为1的正方体ABCD﹣A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2﹣)πB.4(2﹣)πC.3(2+)πD.4(2+)π二、填空题(本大题共5小题,每小题4分,共20分)11.已知随机变量2ξ+η=8,若ξ~B(10,0.4),则E(η)=,D(η).12.(选做题)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:,若曲线C1与曲线C2交于A、B两点则AB=.13.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是,两次闭合后都出现红灯闪烁的概率为,则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是.14.若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则+++…+=.15.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有个.三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”2(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X)附:K2=n=a+b+c+dP(K2≥k0)0.1000.0500.0250.0100.001k02.7063.8415.0246.63510.82817.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40<X<808...