


0,f(p)单调递增;当p∈(0.1,1)时,f′(p)<0,f(p)单调递减.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.(ⅰ)令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ⅱ)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.考点整合1.概率模型公式及相关结论(1)古典概型的概率公式.P(A)==.(2)几何概型的概率公式.P(A)=.(3)条件概率.在A发生的条件下B发生的概率:P(B|A)=.(4)相互独立事件同时发生的概率:若A,B相互独立,则P(AB)=P(A)·P(B).(5)若事件A,B互斥,则P(A∪B)=P(A)+P(B),P(A)=1-P(A).2.独立重复试验与二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)=Cpk(1-p)n-k,k=0,1,2,…,n.用X表示事件A在n次独立重复试验中发生的次数,则X服从二项分布,即X~B(n,p)且P(X=k)=Cpk(1-p)n-k.3.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,此时称随机变量X服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M,N,n.4.离散型随机变量的均值、方差(1)离散型随机变量ξ的分布列为ξx1x2x3…xi…nPp1p2p3…pi…pn离散型随机...
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容