专练33高考大题专练(三)数列的综合运用1.已知等差数列{an}满足a1=3,a5=15,数列{bn}满足b1=4,b5=31.设cn=bn-an,且{cn}为正项等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和Sn.2.[2020·全国卷Ⅲ]设数列{an}满足a1=3,an+1=3an-4n.(1)计算a2,a3,猜想{an}的通项公式并加以证明;(2)求数列{2nan}的前n项和Sn.3.[2019·全国卷Ⅱ]已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;(2)求{an}和{bn}的通项公式.4.[2020·河南信阳高三测试]设数列{an}的前n项和为Sn,a1=2,an+1=2+Sn.(n∈N*)(1)求数列{an}的通项公式;(2)设bn=1+log2(an)2,求证数列的前n项和Tn<.5.[2020·全国卷Ⅰ]设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{an}的公比;(2)若a1=1,求数列{nan}的前n项和.专练33高考大题专练(三)数列的综合运用1.解析:(1)设等差数列{an}的公差为d,依题意得a5=a1+4d=3+4d=15,解得d=3,因此an=3+3(n-1)=3n.设等比数列{cn}的公比为q(q>0),由已知得c1=b1-a1=4-3=1,c5=b5-a5=31-15=16.因为c5=c1q4,即16=1×q4,解得q=2(负值舍去),所以cn=1×2n-1=2n-1.由cn=bn-an得bn=an+cn,所以bn=3n+2n-1.(2)由(1)得bn=3n+2n-1,所以数列{bn}的前n项和Sn=(3+1)+(6+21)+(9+22)+…+(3n+2n-1)=(3+6+9+…+3n)+(1+2+22+…+2n-1)=+=+2n-1.2.解析:(1)a2=5,a3=7.猜想an=2n+1.由已知可得an+1-(2n+3)=3[an-(2n+1)],an-(2n+1)=3[an-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以an=2n+1.(2)由(1)得2nan=(2n+1)2n,所以Sn=3×2+5×22+7×23+…+(2n+1)×2n.①从而2Sn=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-Sn=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1.所以Sn=(2n-1)2n+1+2.3.解析:本题主要考查等差数列与等比数列的定义及通项公式,意在考查考生的逻辑推理能力、运算求解能力,考查的核心素养是逻辑推理、数学运算.(1)由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn).又因为a1+b1=1,所以{an+bn}是首项为1,公比为的等比数列.由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.又因为a1-b1=1,所以{an-bn}是首项为1,公差为2的等差数列.(2)由(1)知,an+bn=,an-bn=2n-1.所以an=[(an+bn)+(an-bn)]=+n-,bn=[(an+bn)-(an-bn)]=-n+.4.解析:(1)∵an+1=2+Sn(n∈N*)∴当n≥2时,an=2+Sn-1,∴an+1-an=Sn-Sn-1=an,∴an+1=2an(n≥2),又a2=2+a1=4,又a1=2,∴a2=2a1,∴{an}是以2为首项以2为公比的等比数列,∴an=2×2n-1=2n.(2)证明:∵bn=1+log2(an)2,则bn=2n+1,∴=,∴Tn===-<.5.解析:(1)设{an}的公比为q,由题设得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q-2=0,解得q1=1(舍去),q2=-2.故{an}的公比为-2.(2)记Sn为{nan}的前n项和.由(1)及题设可得,an=(-2)n-1.所以Sn=1+2×(-2)+…+n×(-2)n-1,-2Sn=-2+2×(-2)2+…+(n-1)×(-2)n-1+n×(-2)n.可得3Sn=1+(-2)+(-2)2+…+(-2)n-1-n×(-2)n=-n×(-2)n.所以Sn=-.