电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

优化方案(新课标)高考数学一轮复习 第三章 第8讲 知能训练轻松闯关-人教版高三全册数学试题VIP免费

优化方案(新课标)高考数学一轮复习 第三章 第8讲 知能训练轻松闯关-人教版高三全册数学试题_第1页
1/3
优化方案(新课标)高考数学一轮复习 第三章 第8讲 知能训练轻松闯关-人教版高三全册数学试题_第2页
2/3
优化方案(新课标)高考数学一轮复习 第三章 第8讲 知能训练轻松闯关-人教版高三全册数学试题_第3页
3/3
【优化方案】(新课标)2016高考数学一轮复习第三章第8讲知能训练轻松闯关1.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的()A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析:选D.由条件及题图可知,∠A=∠B=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.2.(2015·河南郑州模拟)已知A、B两地间的距离为10km,B、C两地间的距离为20km,现测得∠ABC=120°,则A,C两地间的距离为()A.10kmB.10kmC.10kmD.10km解析:选D.如图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=10(km).3.如图,两座相距60m的建筑物AB,CD的高度分别为20m、50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A.30°B.45°C.60°D.75°解析:选B.依题意可得AD=20(m),AC=30(m),又CD=50(m),所以在△ACD中,由余弦定理得cos∠CAD====,又0°<∠CAD<180°,所以∠CAD=45°,所以从顶端A看建筑物CD的张角为45°.4.如图,一条河的两岸平行,河的宽度d=0.6km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1km,水的流速为2km/h,若客船从码头A驶到码头B所用的最短时间为6min,则客船在静水中的速度为()A.8km/hB.6km/hC.2km/hD.10km/h解析:选B.设AB与河岸线所成的角为θ,客船在静水中的速度为vkm/h,由题意知,1sinθ==,从而cosθ=,所以由余弦定理得=+12-2××2×1×,解得v=6.5.(2014·高考四川卷)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.240(-1)mB.180(-1)mC.120(-1)mD.30(+1)m解析:选C.如图,在△ACD中,∠CAD=90°-30°=60°,AD=60m,所以CD=AD·tan60°=60(m).在△ABD中,∠BAD=90°-75°=15°,所以BD=AD·tan15°=60(2-)(m).所以BC=CD-BD=60-60(2-)=120(-1)(m).6.一船自西向东航行,上午10时到达灯塔P的南偏西75°,距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为________海里/小时.解析:由题意知,在△PMN中,PM=68海里,∠MPN=75°+45°=120°,∠MNP=45°.由正弦定理,得=,解得MN=34海里,故这只船航行的速度为海里/小时=海里/小时.答案:7.如图,为了测量河的宽度,在一岸边选定两点A、B望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120m,则这条河的宽度为________.解析:如图,在△ABC中,过C作CD⊥AB于D点,则CD为所求河的宽度.在△ABC中,∵∠CAB=30°,∠CBA=75°,∴∠ACB=75°,∴AC=AB=120m.在Rt△ACD中,CD=ACsin∠CAD=120sin30°=60(m),因此这条河的宽度为60m.答案:60m8.一船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为_______2_km.解析:如图所示,依题意有AB=15×4=60,∠DAC=60°,∠CBM=15°,∴∠MAB=30°,∠AMB=45°.在△AMB中,由正弦定理,得=,解得BM=30.答案:309.(2015·郑州市质量预测)郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=7米,BC=5米,AC=8米,∠C=∠D.求AB的长度.解:在△ABC中,由余弦定理得cosC==.①在△ABD中,由余弦定理得cosD==.②由∠C=∠D得cosC=cosD,解得AB=7,所以AB的长度为7米.10.某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10nmile的C处,并测得渔轮正沿方位角为105°的方向,以9nmile/h的速度向某小岛靠拢,我海军舰艇立即以21nmile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.(精确到0.1°)解:如图所示,根据题意可知AC=10,∠ACB=120°,设舰艇靠近渔轮所需的时间为th,并在B处与渔轮相遇,则AB=21t,BC=9t,在△ABC中,根据余弦定理得AB2=AC2+BC2-2AC·BC·cos120°,所以212t2=102+81t2+2×10×9t×,即360t2-90t-100=0,解得t=或t=-(舍去).所以舰艇靠近渔轮所需的时间为h.此时AB=14,BC=6.在△ABC中,根据正弦定理,得=,所以sin∠CAB==,即∠CAB≈21.8°或∠CAB≈158.2°(舍去),即舰艇航行的方位角为45°+21.8°=66.8°.所以舰艇以66.8°的方位角航行,需h才能靠近渔轮.3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

优化方案(新课标)高考数学一轮复习 第三章 第8讲 知能训练轻松闯关-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部