电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习之考点透析12:解三角形考点透析VIP免费

高考数学二轮复习之考点透析12:解三角形考点透析_第1页
1/8
高考数学二轮复习之考点透析12:解三角形考点透析_第2页
2/8
高考数学二轮复习之考点透析12:解三角形考点透析_第3页
3/8
江苏启东中学高考数学二轮复习之考点透析12:解三角形考点透析【考点聚焦】考点1:正弦定理、余弦定理、勾股定理考点2:面积公式、内角和定理【考点小测】1.(全国卷Ⅰ)在中,已知,给出以下四个论断:B①②③④其中正确的是(A)①③(B)②④(C)①④(D)②③2.(全国卷Ⅱ)锐角三角形的内角A、B满足tanA-=tanB,则有(A)sin2A–cosB=0(B)sin2A+cosB=0(C)sin2A–sinB=0(D)sin2A+sinB=03.(江西卷)在△OAB中,O为坐标原点,,则当△OAB的面积达最大值时,(D)A.B.C.D.4.△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=()A.B.C.D.5.(湖北卷)若的内角满足,则A.B.C.D.解:由sin2A=2sinAcosA0,可知A这锐角,所以sinA+cosA0,又,故选A6.(福建卷)在△ABC中,∠C=90°,则k的值是(D)A.5B.-5C.D.7.(全国卷Ⅰ)的外接圆的圆心为O,两条边上的高的交点为H,,则实数m=1【典型考例】【问题1】三角形内角和定理的灵活运用例1.(2005湖南卷)已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小.解法一由得所以即因为所以,从而由知从而.由即由此得所以解法二:由由、,所以即由得所以即因为,所以由从而,知B+2C=不合要求.再由,得所以例2.[2007年全国高考(四川云南吉林黑龙江)理科数学第17题,文科数学第18题].已知锐角三角形ABC中,(Ⅰ)求证:;(Ⅱ)设AB=3,求AB边上的高.解:(Ⅰ)证明:所以(Ⅱ)解:,即,将代入上式并整理得解得,舍去负值得,设AB边上的高为CD.则AB=AD+DB=由AB=3,得CD=2+.所以AB边上的高等于2+.【问题2】正弦定理、余弦定理、面积公式的灵活应用例3:在ABC中,,AC2,AB3,求的值和ABC的面积.解法一:,又0180Asinsinsin()sincoscossinA105456045604560264SACABAABC1212232643426sin()例4..(2007年湖北文分)在△ABC中,已知,求△ABC的面积.解.本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设AB、BC、CA的长分别为c、a、b,.故所求面积解法3:同解法1可得c=8.又由余弦定理可得故所求面积例5.(2005年湖北理)在△ABC中,已知边上的中线BD=,求sinA的值.解.本小题主要考查正弦定理、余弦定理等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.解法1:设E为BC的中点,连接DE,则DE//AB,且DE=在△BDE中利用余弦定理可得:BD2=BE2+ED2-2BE·EDcosBED,解法2:以B为坐标原点,轴正向建立直角坐标系,且不妨设点A位于第一象限.解法3:过A作AH⊥BC交BC于H,延长BD到P使BD=DP,连接AP、PC,过P作PN⊥BC交BC的延长线于N,则HB=ABcosB=【问题3】向量与解三角形例6.(2004年湖北高考数学·理工第19题,文史第19题,本小题满分12分)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问的夹角取何值时的值最大?并求出这个最大值.21.(2004年湖北高考数学·理工第19题,文史第19题)本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.解法二:以直角顶点A为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系.课后训练:1.(2006全国)在,求(1)(2)若点2.(2006年上海)如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?[解]………….5分北2010AB••C…8分……………………………………………………………………11分………………14分3.已知中,分别是角的对边,且,=,求角A.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习之考点透析12:解三角形考点透析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部