电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学三轮复习 小题分类练(六)创新迁移类 文 苏教版-苏教版高三全册数学试题VIP免费

(江苏专用)高考数学三轮复习 小题分类练(六)创新迁移类 文 苏教版-苏教版高三全册数学试题_第1页
1/5
(江苏专用)高考数学三轮复习 小题分类练(六)创新迁移类 文 苏教版-苏教版高三全册数学试题_第2页
2/5
(江苏专用)高考数学三轮复习 小题分类练(六)创新迁移类 文 苏教版-苏教版高三全册数学试题_第3页
3/5
小题分类练(六)创新迁移类(建议用时:50分钟)1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为________.2.已知集合M={1,2,3,4},集合A、B为集合M的非空子集,若∀x∈A、y∈B,x4|a|,则Smin>0;⑤若|b|=2|a|,Smin=8|a|2,则a与b的夹角为.7.记max{x,y}=min{x,y}=设a,b为平面向量,则下列说法正确的序号为________.①min{|a+b|,|a-b|}≤min{|a|,|b|};②min{|a+b|,|a-b|}≥min{|a|,|b|};③max{|a+b|2,|a-b|2}≤|a|2+|b|2;④max{|a+b|2,|a-b|2}≥|a|2+|b|2.8.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(1,2,3)且法向量为m=(-1,-2,1)的平面(点法式)方程为____________.9.对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z1,z2,z3有如下四个命题:①(z1+z2)*z3=(z1*z3)+(z2*z3);②z1*(z2+z3)=(z1*z2)+(z1*z3);③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1.则真命题的个数是________.10.(2019·长春市质量监测)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:(1)对任意的x∈[0,1],恒有f(x)≥0;1(2)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列3个函数中不是M函数的个数是________.①f(x)=x2;②f(x)=x2+1;③f(x)=2x-1.11.当两个集合中一个集合为另一集合的子集时称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为________.12.已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.13.在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形;②到原点的“折线距离”等于1的点的集合是一个圆;③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹方程是x=0;④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合是两条平行线.其中真命题有________个.14.对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学三轮复习 小题分类练(六)创新迁移类 文 苏教版-苏教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部