第7章立体几何第5节直线、平面垂直的判定与性质1.(2012安徽,5分)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:若α⊥β,又α∩β=m,b⊂β,b⊥m,根据两个平面垂直的性质定理可得b⊥α,又因为a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,一定有b⊥a,但不能保证b⊥α,即不能推出α⊥β.答案:A2.(2011浙江,5分)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析:对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,甚至可能平行于平面β,其余选项均是正确的.答案:D3.(2011新课标全国,12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=AD.从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.所以BD⊥平面PAD.故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1).=(-1,,0),=(0,,-1),=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则即因此可取n=(,1,).设平面PBC的法向量为m,则可取m=(0,-1,-).则cos〈m,n〉==-.故二面角A-PB-C的余弦值为-.