B.D.<答案B解析由m>n>0,p |n|>0,|p|>|q|>0,所以<,而,,,均为负数,所以>.而与的大小则无法比较,故选B.4.(2018·青岛质检)已知复数z的共轭复数为,且z+(1+i)=3-4i,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案B解析设z=a+bi(a,b∈R,故z+(1+i)=a+bi+(a-bi)(1+i)=(2a+b)+ai=3-4i,则a=-4,b=11,故z=-4+11i,则在复平面内,复数z所对应的点为(-4,11),位于第二象限.故选B.5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C.g(x)D.-g(x)答案D解析由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).6.(2017·浙江高考)若x,y满足约束条件则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)答案D解析不等式组形成的可行域如图所示.平移直线y=-x,当直线过点A(2,1)时,z有最小值4.显然z没有最大值.故选D.7.(2018·长春质检)设正实数a,b满足a+b=1,则()A.+有最大值4B.有最小值C.+有最大值D.a2+b2有最小值答案C解析由于a>0,b>0,由基本不等式得1=a+b≥2,当且仅当a=b时,等号成立,∴≤,∴ab≤,+==≥4,因此+的最小值为4,a2+b2=(a+b)2-2ab=1-2ab≥1-=,(+)2=a+b+2=1+2≤1+1=2,所以+有最大值.故选C.8.(2018·福建质检)程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起到了重要的作用卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.120B.84C.56D.28答案B解析第一次循环,i=0+1=1,n=0+1=1,S=0+1=1;i<7,第二次循环,i=1+1=2,n=1+2=3,S=1+3=4;i<7,第三次循环,i=2+1=3,n=3+3=6,S=4+6=10;i<7,第四次循环,i=3+1=4,n=6+4=10,S=10+10=20;i<7,第五次循环,i=4+1=5,n=10+5=15,S=20+15=35;i<7,第六次循环,i=5+1=6,n=15+6=21,S=35+21=56;i<7,第七次循环,i=6+1=7,n=21+7=28,S=56+28=84;i=7,结束循环,输出S=84.故选B.9.(2018·湖北武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁答案B解析由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.10.(2018·山东滨州模拟)已知变量x,y满足约束条件若z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为()A.1B.C.D.答案D解析作出不等式组满足的可行域如图所示,目标函数z=ax+by(a>0,b>0)...
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容