专题二函数(一)第____课时共__5__课【考点聚焦】考点1:函数的概念、表示法、定义域、值域、最值;反函数的定义、求反函数、函数图象的位置关系;考点2:函数的单调性、奇偶性、周期性及对称性;考点3:二次函数的图象与性质及其应用;考点4:指数函数和对数函数的定义、性质(尤其是单调性)、图象和应用;考点5:抽象函数问题的求解;考点6:运用函数的思想、数形结合思想和分类讨论思想解决问题;考点7:导数的概念及运算,导数的应用。第一、二课时【重点难点热点】考点1:函数的概念、表示法、定义域、值域、最值;㈠深化对函数概念的认识【问题1】下列函数中,不存在反函数的是()分析:处理本题有多种思路.分别求所给各函数的反函数,看是否存在是不好的,因为过程太繁琐.从概念看,这里应判断对于给出函数值域内的任意值,依据相应的对应法则,是否在其定义域内都只有惟一确定的值与之对应,因此可作出给定函数的图象,用数形结合法作判断,这是常用方法,请读者自己一试.此题作为选择题还可采用估算的方法.对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=-1(-1≤-1).依据概念,则易得出D中函数不存在反函数.于是决定本题选D.说明:不论采取什么思路,理解和运用函数与其反函数的关系是这里解决问题的关键.由于函数三要素在函数概念中的重要地位,那么掌握确定函数三要素的基本方法当然成了函数概念复习中的重要课题.㈡系统小结确定函数三要素的基本类型与常用方法1.求函数定义域的基本类型和常用方法由给定函数解析式求其定义域这类问题的代表,实际上是求使给定式有意义的x的取值范围.它依赖于对各种式的认识与解不等式技能的熟练.这里的最高层次要求是给出的解析式还含有其他字【问题2】.已知函数定义域为(0,2),求下列函数的定义域:用心爱心专心分析:x的函数f(x)是由u=x与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量.由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x<2.求x的取值范围.解:(1)由0<x<2,得说明:本例(1)是求函数定义域的第二种类型,即不给出f(x)的解析式,由f(x)的定义域求函数f[g(x)]的定义域.关键在于理解复合函数的意义,用好换元法.(2)是二种类型的综合.求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到.2、函数的解析式问题求解函数解析式是高考重点考查内容之一,需引起重视新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆要在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,形成能力,并培养考生的创新能力和解决实际问题的能力新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆【问题3】已知xy<0,并且4x-9y=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.分析:4x-9y=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?用心爱心专心所以因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).说明:本例从某种程度上揭示了函数与解析几何中方程的内在联系.任何一个函数的解析式都可看作一个方程,在一定条件下,方程也可转化为表示函数的解析式.求函数解析式还有两类问题:(1)求常见函数的解析式.由于常见函数(一次函数,二次函数,幂函数,指数函数,对数函数,三角函数及反三角函数)的解析式的结构形式是确定的,故可用待定系数法确定其解析式.这里不再举例.(2)从生产、生活中产生的函数关系的确定.这要把有关学科知识,生活经验与函数概念结合起来,举例也宜放在函数复习的以后部分.【问题4】(1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp...