正弦函数、余弦函数的性质(二)(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·北京高一检测)已知函数y=sinx和y=cosx在区间M上都是增函数,那么区间M可以是()A.B.C.D.【解析】选D.y=sinx在和上是增函数,y=cosx在(π,2π)上是增函数,所以区间M可以是.【补偿训练】下列函数中,周期为π,且在上为减函数的是()A.y=sinB.y=cosC.y=sinD.y=cos【解析】选A.对于A,y=sin=cos2x,周期为π,在上为减函数,故A正确,对于B,y=cos=-sin2x,周期为π,在上为增函数,故B错误,对于C,D,两个函数的周期为2π,故C,D错误.2.当-≤x≤时,函数f(x)=2sin有()A.最大值为1,最小值为-1B.最大值为1,最小值为-1C.最大值为2,最小值为-2D.最大值为2,最小值为-1【解析】选D.因为-≤x≤,所以-≤x+≤,所以-≤sin≤1,所以-1≤2sin≤2,即f(x)的最大值为2,最小值为-1.【补偿训练】y=2sin在[π,2π]上的最小值是()A.2B.1C.-1D.-2【解析】选C.因为x∈[π,2π],所以+∈,所以当+=时ymin=2×=-1.3.下列关系式中正确的是()A.sin11°sin260°.(2)cos=cos=cos,cos=cos=cos.因为函数y=cosx在[0,π]上单调递减,且0<<<π,所以cos>cos,所以cos>cos.10.(2015·张家界高一检测)已知函数f(x)=sin(2x+)+1,x∈R.(1)写出函数f(x)的最小正周期.(2)当x∈时,求函数f(x)的最大值.【解析】(1)因为=π,所以函数f(x)的最小正周期为π.4(2)当x∈时,2x+∈,所以当2x+=,即x=时,sin取得最大值,值为1,所以,函数f(x)的最大值为2.【延伸探究】本题条件下(1)求f(x)的最小值及单调递减区间.(2)求使f(x)=时x的取值集合.【解析】(1)当2x+=2kπ-,即x=kπ-,k∈Z时[f(x)]min=-1+1=0.由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,所以f(x)=sin+1的单调递减区间为,k∈Z.(2)由f(x)=得sin=,所以2x+=2kπ+或2kπ+,即x=kπ或x=kπ+,k∈Z.所以使f(x)=时x的取值集合为.(20分钟40分)一、选择题(每小题5分,共10分)1.函数y=-2cos在区间上是单调函数,则实数a的最大值为()A.B.6πC.D.【解析】选D.x∈得t=+∈(,+],则必有y=-2cost在上单调.由于=3π+∈[3π,4π],y=-2cost在[3π,4π]上为减函数,5所以⊆[3π,4π],所以+≤4π,故a≤.所以a的最大值为.2.(2015·天水高一检测)若f(x)=3sin(2x+φ)+a,对任意实数x都有f=f,且f()=-4.则实数a的值等于()A.-1B.-7或-1C.7或1D.±7【解析】选B.因为对任意实数x都有f=f,所以直线x=是函数f(x)图象的一条对称轴.当x=时,f(x)取得最大值或最...