5.1.2弧度制一、选择题1.1920°的角化为弧度数为()A.B.C.πD.π解析:∵1°=rad,∴1920°=1920×rad=πrad.答案:D2.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是()A.B.C.-D.-解析:将表的分针拨快应按顺时针方向旋转,为负角,故A、B不正确,又因为拨快10分钟,故转过的角的大小应为圆周的,故所求角的弧度数为-×2π=-.答案:C3.把-π表示成θ+2kπ(k∈Z)的形式,使|θ|最小的值是()A.-πB.-2πC.πD.-π解析:∵-π=-2π+=2×(-1)π+.∴θ=-π.答案:A4.一个扇形的弧长与面积的数值都是6,则这个扇形的圆心角是()A.1B.2C.3D.4解析:设扇形的圆心角的弧度数为θ,半径为R,由题意,得,解得θ=3,故选C.答案:C二、填空题5.下列四个角:1,60°,,-由大到小的排列为________.解析:只需把60°化成弧度数,因为60°=60×=,所以四个角为1,,,-.所以60°=>1>-.答案:60°=>1>-6.若三角形三内角之比为345,则三内角的弧度数分别是________.解析:设三角形三内角弧度数分别为3k,4k,5k,则由3k+4k+5k=π,得k=,所以3k=,4k=,5k=.答案:,,7.弧长为3π,圆心角为135°的扇形的半径为________,面积为________.解析:135°==,所以扇形的半径为=4,面积为×3π×4=6π.答案:46π三、解答题8.将下列角度与弧度进行互化:(1)20°;(2)-15°;(3);(4)-.解析:(1)20°=π=.(2)-15°=-π=-.(3)=(×)°=(×180)°=105°.(4)-=(-×)°=(-×180)°=-396°.9.如图,扇形OAB的面积是4cm2,它的周长是8cm,求扇形的圆心角及弦AB的长.解析:设扇形圆心角的弧度数为θ(0<θ<2π),弧长为lcm,半径为Rcm,依题意有由①②得R=2,l=4,∴θ==2.过O作OC⊥AB,则OC平分∠BOA,又∠BOA=2rad,∴∠BOC=1rad,∴BC=OB·sin1=2sin1(cm),∴AB=2BC=4sin1(cm).故所求扇形的圆心角为2rad,弦AB的长为4sin1cm.[尖子生题库]10.已知一扇形的圆心角是α,所在圆的半径是R.(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?解析:(1)设弧长为l,弓形面积为S弓,∵α=60°=,R=10,∴l=αR=(cm).S弓=S扇-S△=××10-×10×10×cos=50(cm2).(2)扇形周长c=2R+l=2R+αR,∴α=,∴S扇=αR2=··R2=(c-2R)R=-R2+cR=-2+.当且仅当R=,即α=2时,扇形面积最大,且最大面积是.