电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

重点高一:零点问习题的解习题方法VIP免费

重点高一:零点问习题的解习题方法_第1页
1/14
重点高一:零点问习题的解习题方法_第2页
2/14
重点高一:零点问习题的解习题方法_第3页
3/14
欢迎阅读课题谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒]此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点?方程f(x)=0有实数根?函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点?方程f(x)-g(x)=0有实数根?函数y=f(x)-g(x)的图象与y=0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点?方程f(x)=g(x)有实数根?函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.欢迎阅读(4)二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=lnx+x-2,则函数f(x)的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】法一: f(1)=ln1+1-2=-1<0,f(2)=ln2>0,∴f(1)·f(2)<0, 函数f(x)=lnx+x-2的图象是连续的,∴函数f(x)的零点所在的区间是(1,2).法二:函数f(x)的零点所在的区间转化为函数g(x)=lnx,h(x)=-x+2图象交点的横坐标所在的范围,如图所示,可知f(x)的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y=ln(x+1)与y=1x的图象交点的横坐标所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】函数y=ln(x+1)与y=1x的图象交点的横坐标,即为函数f(x)=ln(x+1)-1x的零点, f(x)在(0,+∞)上为增函数,且f(1)=ln2-1<0,f(2)=ln3-12>0,∴f(x)的零点所在区间为(1,2).【答案】B3.函数f(x)=3x-7+lnx的零点位于区间(n,n+1)(n∈N)内,则n=________.【解析】求函数f(x)=3x-7+lnx的零点,可以大致估算两个相邻自然数的函数值,如f(2)=欢迎阅读-1+ln2,由于ln2<lne=1,所以f(2)<0,f(3)=2+ln3,由于ln3>1,所以f(3)>0,所以函数f(x)的零点位于区间(2,3)内,故n=2.【答案】24.(2015·长沙模拟)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内【解析】本题考查零点的存在性定理.依题意得f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-b)(c-a)>0,因此由零点的存在性定理知f(x)的零点位于区间(a,b)和(b,c)内.【答案】A5.(2014·高考湖北卷)已知f(x)是定义在R上的奇函数,当x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

重点高一:零点问习题的解习题方法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部