【成才之路】版高中数学1.2应用举例(第2课时)练习一、选择题1.如图,从气球A测得济南全运会东荷、西柳个场馆B、C的俯角分别为α、β,此时气球的高度为h,则两个场馆B、C间的距离为()A.B.C.D.[答案]B[解析]在Rt△ADC中,AC=,在△ABC中,由正弦定理,得BC==.2.某工程中要将一长为100m倾斜角为75°的斜坡,改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长()A.100mB.100mC.50(+)mD.200m[答案]A[解析]如图,由条件知,AD=100sin75°=100sin(45°+30°)=100(sin45°cos30°+cos45°sin30°)=25(+),CD=100cos75°=25(-),BD===25(3+).∴BC=BD-CD=25(3+)-25(-)=100(m).3.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为()A.10mB.20mC.20mD.40m[答案]D[解析]设AB=xm,则BC=xm,BD=xm,在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos120°,∴x2-20x-800=0,∴x=40(m).4.若甲船在B岛的正南方A处,AB=10km,甲船以4km/h的速度向正北航行,同时,乙船自B岛出发以6km/h的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是()A.minB.hC.21.5minD.2.15h[答案]A[解析]当时间t<2.5h时,如图.∠CBD=120°,BD=10-4t,BC=6t.在△BCD中,利用余弦定理,得CD2=(10-4t)2+(6t)2-2×(10-4t)×6t×cos120°=28t2-20t+100.当t==(h),即min时,CD2最小,即CD最小为.当t≥2.5h时,CF=15×,CF2=>CD2,故距离最近时,t<2.5h,即t=min.5.江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距()A.10mB.100mC.20mD.30m[答案]D[解析]设炮塔顶A、底D,两船B、C,则∠ABD=45°,∠ACD=30°,∠BDC=30°,AD=30,∴DB=30,DC=30,BC2=DB2+DC2-2DB·DC·cos30°=900,∴BC=30.6.如图所示,在山底A处测得山顶B的仰角∠CAB=45°,沿倾斜角为30°的山坡向山顶走1000m到达S点,又测得山顶仰角∠DSB=75°,则山高BC为()A.500mB.200mC.1000mD.1000m[答案]D[解析] ∠SAB=45°-30°=15°,∠SBA=∠ABC-∠SBC=45°-(90°-75°)=30°,在△ABS中,AB===1000,∴BC=AB·sin45°=1000×=1000(m).二、填空题7.某海岛周围38nmile有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30nmile后测得此岛在东北方向,若不改变航向,则此船________触礁危险(“”“”填有或无).[答案]无[解析]如图所示,由题意在△ABC中,AB=30,∠BAC=30°,∠ABC=135°,∴∠ACB=15°,由正弦定理,得BC====15(+).在Rt△BDC中,CD=BC=15(+1)>38.∴此船无触礁的危险.8.甲船在A处发现乙船在北偏东60°的B处,乙船正以anmile/h的速度向北行驶.已知甲船的速度是anmile/h,问甲船应沿着________方向前进,才能最快与乙船相遇?[答案]北偏东30°[解析]如图,设经过th两船在C点相遇,则在△ABC中,BC=at,AC=at,B=180°-60°=120°,由=,得sin∠CAB===. 0°<∠CAB<90°,∴∠CAB=30°,∴∠DAC=60°-30°=30°.即甲船应沿北偏东30°的方向前进,才能最快与乙船相遇.三、解答题9.如图所示,两点C、D与烟囱底部在同一水平直线上,在点C1、D1,利用高为1.5m的测角仪器,测得烟囱的仰角分别是α=45°和β=60°,C、D间的距离是12m,计算烟囱的高AB.(精确到0.01m)[解析]在△BC1D1中,∠BD1C1=120°,∠C1BD1=15°.由正弦定理=,∴BC1==18+6,∴A1B=BC1=18+6,则AB=A1B+AA1≈29.89(m).10.在海岸A处,发现北偏东45°方向,距A处(-1)nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2nmile的C处的缉私船奉命以10nmile/h的速度追截走私船.此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?[解析]设缉私船用t小时在D处追上走私船.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠CAB=(-1)2...