电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

集合板块一集合概念与表示学生高中数学必修题库VIP免费

集合板块一集合概念与表示学生高中数学必修题库_第1页
1/4
集合板块一集合概念与表示学生高中数学必修题库_第2页
2/4
集合板块一集合概念与表示学生高中数学必修题库_第3页
3/4
题型一集合的性质【例1】以下元素的全体不能够构成集合的是().A.中国古代四大发明B.地球上的小河流C.方程210x的实数解D.周长为10cm的三角形【例2】在“①难解的题目;②方程x2+1=0在实数集内的的解;③直角坐标平面上第四象限内的所有点;④很多多项式”中,能组成集合的是()A②③B①③C②④D①②④【例3】分析下列各组对象能否构成集合:(1)比2008大的数;(2)一次函数(0)ykxbk的图象上的若干个点;(3)正比例函数yx与反比例函数1yx的图象的交点;(4)面积比较小的三角形.【例4】下面四个命题正确的是()A.10以内的质数集合是{0,3,5,7}B.“个子较高的人”不能构成集合C.方程0122xx的解集是{1,1}D.偶数集为Nxkxx,2|【例5】下面的结论正确的是()A.Qax,则NaB.Na,则a{自然数}C.012x的解集是{-1,1}D.正偶数集是有限集【例6】已知集合S={cba,,}中的三个元素可构成ABC的三条边长,那么ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【例7】已知集合210Mxxaxaxa各元素之和等于3,则实数a的值为【例8】求集合2{,2,}xxx中的元素x的取值范围.【例9】下面有四个命题:典例分析板块一.集合的概念与表示⑴集合N中最小的数是1;⑵若a不属于N,则a属于N;⑶若,abNN,则ab的最小值为2;⑷212xx的解可表示为1,1;其中正确命题的个数为()A.0个B.1个C.2个D.3个【例10】下列命题正确的有()⑴很小的实数可以构成集合;⑵集合2|1yyx与集合2,|1xyyx是同一个集合;⑶3611,,,,0.5242这些数组成的集合有5个元素;⑷集合,|0,,xyxyxyR≤是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个【例11】下列各选项中的M与P表示同一集合的是()A.{0},MPB.{(3,7)},{(7,3)}MPC.2{(,)|3,}MxyyxxR,2{|3,}PyyxxRD.22{|1,},{|(1)1,}MyyttRPttyyR【例12】已知集合A={01682xkx}只有一个元素,试求实数k的值,并用列举法表示集合A。题型二集合的表示法【例13】下列集合表示法正确的是()A.{1,2,2}B.{全体实数}C.{有理数}D.不等式052x的解集为{052x}【例14】方程组2219xyxy的解集是()A.5,4B.5,4C.5,4D.5,4.【例15】已知集合{|8}MxNxN,则M中元素的个数是()A.10B.9C.8D.7【例16】试选用适当的表示方法表示下列集合:(1)一次函数3yx与26yx的图象的交点组成的集合;(2)二次函数224yxx的函数值组成的集合;(3)反比例函数254yx的自变量的值组成的集合.【例17】用列举法表示下列集合⑴方程2260xx的根;⑵不大于8且大于3的所有整数;⑶函数32yx与1yx的交点组成的集合.【例18】已知集合8|6AxxNN,试用列举法表示集合A.【例19】判断下列集合是有限集还是无限集.对于有限集,指出其元素的个数.(1){|4012124031}AxZx;(2)平面内到线段AB的两个端点距离距离相等的点P的集合.【例20】用列举法表示集合:10,1MmmmZZ【例21】已知aZ,(,)3Axyaxy≤,且(2,1)A,(1,4)A,求满足条件的a的值.【例22】直角坐标平面除去两点(1,1)A、(2,2)B可用集合表示为()A.(,)|1,1,2,2xyxyxyB.1(,)|1xxyy或22xyC.1(,)|1xxyy且22xyD.2222(,)|[(1)(1)][(2)(2)]0xyxyxy【例23】已知2()(R,R)fxxaxbab,{|(),R}Axxfxx,{|[()],R}Bxxffxx.当{1,3}A时,用列举法表示集合B.题型三集合与元素的关系【例24】用“”或“”填空:⑴若2{|340}Axxx,则1___A;4___A;⑵0___;⑶0___{0}.【例25】用符号“”或“”填空⑴0______N,5______N,16______N⑵1______,π_______,e______2RQQQe(e是个无理数)⑶2323________|6,,xxababQQ【例26】已知},2|{NxkxxP,若集合P中恰有3个元素,求k。【例27】设集合},4121|{ZkkxxA,若29x,则下列关系正确的是()A.AxB.AxC.Ax}{D.Ax}{【例28】用适当的符号填空:已知{|32,}AxxkkZ,{|61,}BxxmmZ,则有:17A;-5A;17B.【例29】给出下列关系:(1){0}是空集;(2)若aN,则aN;(3)集合2210AxRxx(4)集合6BxQNx其中正确的个数为()A.1个B.2个C.3个D.0个【例30】集合31,AxxnnZ,32,BxxnnZ,63,CxxnnZ.⑴若cC,问是否有aA,bB,使cab;⑵对于任意aA,bB,是否一定有abC?并证明你的结论.【例31】试用适当的符号把2323和6,abaRbR连接起来.【例32】设{|2,,}SxxmnmnZ⑴若aZ,则a是否是集合S的元素?⑵对于S中任意两个元素1x、2x,则12xx、12xx是否属于S?⑶对于给定的整数n,试求满足021mn的S中元素的个数.【例33】已知集合A={x|x=m2-n2,m∈Z,n∈Z}求证:(1)3∈A;(2)偶数4k—2(k∈Z)不属于A.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

集合板块一集合概念与表示学生高中数学必修题库

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部