【成才之路】-学年高中数学第一章计数原理知能基础测试新人教B版选修2-3时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种选出3种分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种[答案]B[解析]因为黄瓜必须种植,在余下的3种蔬菜品种中再选出两种,进行排列共有CA=18种.故选B.2.已知C-C=C(n∈N*),则n等于()A.14B.12C.13D.15[答案]A[解析]因为C+C=C,所以C=C.∴7+8=n+1,∴n=14,故选A.3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是()A.8B.12C.16D.24[答案]B[解析] A=n(n-1)=132.∴n=12.故选B.4.(1+x)7的展开式中x2的系数是()A.42B.35C.28D.21[答案]D[解析]展开式中第r+1项为Tr+1=Cxr,T3=Cx2,∴x2的系数为C=21.5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9![答案]C[解析]本题考查捆绑法排列问题.由于一家人坐在一起,可以将一家三口人看作一个整体,一家人坐法有3!种,三个家庭即(3!)3种,三个家庭又可全排列,因此共(3!)4种.注意排列中在一起可用捆绑法,即相邻问题.6.(1-x)10展开式中x3项的系数为()A.-720B.720C.120D.-120[答案]D[解析]本题考查了二项式展开定理,要认清项的系数与二项式系数的区别C(-x)3=-Cx3,故选D.7.若多项式x2+x10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10,则a9=()A.9B.10C.-9D.-10[答案]D[解析]x10的系数为a10,∴a10=1,x9的系数为a9+C·a10,∴a9+10=0,∴a9=-10.故应选D.8.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种[答案]A[解析]本题考查了组合及分步计数原理的运用.分两步进行:第一步,先派一名教师到甲地,另一名教师去乙地,共有C种选法;第二步,选派两名学生到甲地,另两名学生到乙地,有C种选法,由分步乘法计数原理知,共有不同选派方案CC=12种.9.在24的展开式中,x的幂的指数是整数的项共有()A.3项B.4项C.5项D.6项[答案]C[解析] Tr+1=C()24-r·x-=Cx12-r,r∈{0,1,2,3,…,24},∴r∈{0,6,12,18,24}时,x的幂的指数是整数,共有5项.故应选C.10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意不同的放法共有CC=18种.11.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种[答案]A[解析]考查排列组合有关知识.解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名,∴共有C·C+C·C=70.故选A.12.(·安徽理,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对[答案]C[解析]解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD-A1B1C1D1中,与面对角线AC成60°角的面对角线有B1C、BC1、C1D、CD1、A1D、AD1、A1B、AB1共8条,同理与BD成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC成60°角时,有AD1,计算与AD1成60°角时有AC,故AD1与AC这一对被计算了2次),因此共有×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C-6-12=48对.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A...