电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高等数学常用极限求法11VIP免费

高等数学常用极限求法11_第1页
1/8
高等数学常用极限求法11_第2页
2/8
高等数学常用极限求法11_第3页
3/8
来源于网络求函数极限的方法和技巧摘要:本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。关键词:函数极限引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。主要内容一、求函数极限的方法1、运用极限的定义例:用极限定义证明:证:由244122322xxxxxx0取则当20x时,就有由函数极限定义有:1223lim22xxxx2、利用极限的四则运算性质若Axfxx)(lim0Bxgxx)(lim0(I))()(lim0xgxfxx)(lim0xfxxBAxgxx)(lim0(II)BAxgxfxgxfxxxxxx)(lim)(lim)()(lim000(III)若B≠0则:(IV)cAxfcxfcxxxx)(lim)(lim00(c为常数)上述性质对于时也同样成立xxx,,例:求453lim22xxxx解:453lim22xxxx=254252322来源于网络3、约去零因式(此法适用于型时00,0xx)例:求121672016lim23232xxxxxxx解:原式=)12102(65)2062(103lim2232232xxxxxxxxxxx=)65)(2()103)(2(lim222xxxxxxx=)65()103(lim222xxxxx=)3)(2()2)(5(lim2xxxxx=2limx735xx4、通分法(适用于型)例:求)2144(lim22xxx解:原式=)2()2()2(4lim2xxxx=)2)(2()2(lim2xxxx=4121lim2xx5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x)满足:(I)0)(lim0xfxx(II)Mxg)((M为正整数)则:0)()(lim0xfxgxx例:求xxx1sinlim0解:由0lim0xx而11sinx故原式=01sinlim0xxx6、利用无穷小量与无穷大量的关系。来源于网络(I)若:)(limxf则0)(1limxf(II)若:0)(limxf且f(x)≠0则)(1limxf例:求下列极限①51limxx②11lim1xx解:由)5(limxx故051limxx由0)1(lim1xx故11lim1xx=7、等价无穷小代换法设'',,,都是同一极限过程中的无穷小量,且有:''~,~,''lim存在,则lim也存在,且有lim=''lim例:求极限2220sincos1limxxxx解:,~sin22xx2)(~cos1222xx2220sincos1limxxxx=212)(2222xxx注:在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”8、利用两个重要的极限。但我们经常使用的是它们的变形:例:求下列函数极限9、利用函数的连续性(适用于求函数在连续点处的极限)。例:求下列函数的极限)1ln(15coslim)1(20xxxexx、(2)xxx)1ln(lim010、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有:来源于网络nkmlxxmnklx11lim1m、n、k、l为正整数。例:求下列函数极限①mxxmnx(11lim1、n)N②1)1232(limxxxx解:①令t=mnx则当1x时1t,于是原式=nmttttttttttnmtnmt)1)(1()1)(1(lim11lim121211②由于1)1232(limxxxx=1)1221(limxxx令:tx1212则2111tx1)1232(limxxxx=1)1221(limxxx=2110)1(limttt=eettttt1)1(lim)1(lim2101011、利用函数极限的存在性定理定理:设在0x的某空心邻域内恒有g(x)≤f(x)≤h(x)且有:则极限)(lim0xfxx存在,且有例:求xnxaxlim(a>1,n>0)解:当x≥1时,存在唯一的正整数k,使k≤x≤k+1于是当n>0时有:及aakakaxknknxn11又当x时,k有及1limknkak0101limaaakknkxnxaxlim=012、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。来源于网络定理:函数极限)(lim0xfxx存在且等于A的充分必要条件是左极限)(lim0xfxx及右极限)(lim0xfxx都存在且都等于A。即有:Axfxx)(lim0)(lim0xfxx=)(lim0xfxx=A例:设)(xf=1,10,0,212xxxxxxxex求)(lim0xfx及)(lim1xfx由1)(lim)(lim00xfxfxx13、罗比塔法则(适用于未定式极限)定理:若此定理是对00型而言,对于函数极限的其它类型,均有类似的法则。注:运用罗比塔法则求极限应注意以下几点:1、要注意条件,也就是说,在没有化为,00时不可求导。2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。4、当)()(lim''xgxfax不存在时,本法则失效,但并不是说极限不存在,此...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高等数学常用极限求法11

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部