1(本小题满分12分)某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示(1)求甲、乙两名运动员得分的中位数;(2)你认为哪位运动员的成绩更稳定(3)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.(参考数据:2222222981026109466,236112136472222222)2在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比(2)哪组上交的作品数量最多共有多少件(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高3已知向量1,2ar,,bxyr.(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足1abrrg的概率;(2)若实数,xy1,6,求满足0abrrg的概率.4某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组[500,900)[900,1100)[1100,1300)[1300,1500)[1500,1700)[1700,1900)[1900,)频数4812120822319316542频率(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.气温(℃)频数频率[5,1]x0.03[0,4]8[5,9]12[10,14]22[15,19]25[20,24]t[25,29]mO19题图181716151413秒频率组距0.060.080.160.320.385为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:(1)若第六、七、八组的频数t、m、n为递减的等差数列,且第一组与第八组的频数相同,求出x、t、m、n的值;(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为x,y,求事件“||5xy”的概率.6某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.7某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组)14,13;第二组)15,14,⋯⋯,第五组18,17.右图是按上述分组方法得到的频率分布直方图.(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;[30,34]n合计1001频率分数901001101201300.050.100.150.200.250.300.350.408070(II)设m、n表示该班某两位同学的百米测试成绩,且已知18,17)14,13,nm,求事件“1nm”的概率.8一人盒子中装有4张卡片,每张卡上写有1个数字,数字分别是0,1、2、3。现从盒子中随机抽取卡片。(I)若一次抽取3张卡片,求3张卡片上数字之和大于等于5的概率;(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字2的概率。9为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查。已知A,B,C区中分别有18,27,18个工厂,(1)求从A,B,C区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率;10某市一公交线路某区间内共设置六个站点,分别为012345,,,,,AAAAAA,现有甲乙两人同时从0A站点上车,且他们中的每个人在站点(1,2,3,4,5)iAi下车是等可能的.(Ⅰ)求甲在2A站点下车的概率;(Ⅱ)甲,乙两人不在同一站点下车的概率.1解:(1)运动员甲得分的中位数是22,运动员乙得分的中位数是23⋯2分(2)...