第一章立体几何初步§1简单几何体【课时目标】1.能根据圆柱、圆锥、圆台和球的定义及结构特征,掌握它们的相关概念和表示方法.2.能根据棱柱、棱锥、棱台的定义和结构特征,掌握它们的相关概念、分类和表示方法.1.以____________所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球.2.分别以________________、___________、_____________所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台.3.棱柱的结构特征:两个面____________,其余各面都是____________,并且每相邻两个四边形的公共边都____________,由这些面围成的几何体叫作棱柱.侧棱垂直于底面的棱柱叫作__________,底面是正多边形的直棱柱叫作__________.4.棱锥的结构特征:有一个面是__________,其余各面是_______________________,这些面围成的几何体叫棱锥.如果棱锥的底面是____________,且各侧面________,就称作正棱锥.5.棱台的结构特征:用一个__________棱锥底面的平面去截棱锥,____________之间的部分叫作棱台.一、选择题1.棱台不具备的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台3.下列说法正确的是()A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线4.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的5.观察下图所示几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该“”正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标△的面的方位是()A.南B.北C.西D.下二、填空题7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.三、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.能力提升12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是()13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.第一章立体几何初步§1简单几何体答案知识梳理1.半圆的直径2.矩形的一边直角三角形的一条直角边直角梯形垂直于底边的腰3.互相平行四边形互相平行直棱柱正棱柱4.多边形有一个公共顶点的三角形正多边形全等5....