电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.4.2.2 空间图形的公理(二)课时作业 北师大版必修2VIP免费

高中数学 1.4.2.2 空间图形的公理(二)课时作业 北师大版必修2_第1页
1/5
高中数学 1.4.2.2 空间图形的公理(二)课时作业 北师大版必修2_第2页
2/5
高中数学 1.4.2.2 空间图形的公理(二)课时作业 北师大版必修2_第3页
3/5
4.2空间图形的公理(二)【课时目标】1.理解异面直线所成角的定义;2.能用公理4及定理解决一些简单的相关问题.1.公理4:平行于同一条直线的两条直线________.2.定理:空间中,如果两个角的两边分别对应________,那么这两个角________或________.3.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使a′∥a,b′∥b,我们把a′与b′所成的____________叫做异面直线a与b所成的角.如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角的取值范围是____________.一、选择题1.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A.异面或平行B.异面或相交C.异面D.相交、平行或异面2.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行B.一定相交C.一定异面D.相交或异面3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行4.给出下列四个命题:①垂直于同一直线的两条直线互相平行;②平行于同一直线的两直线平行;③若直线a,b,c满足a∥b,b⊥c,则a⊥c;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是()A.1B.2C.3D.45.如图所示,已知三棱锥A-BCD中,M、N分别为AB、CD的中点,则下列结论正确的是()A.MN≥(AC+BD)B.MN≤(AC+BD)C.MN=(AC+BD)D.MN<(AC+BD)二、填空题6.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________.7.已知正方体ABCD—A′B′C′D′中:(1)BC′与CD′所成的角为________;(2)AD与BC′所成的角为________.8.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确结论的序号为________.三、解答题9.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.10.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.能力提升11.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).12.如图所示,正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是()A.60°B.45°C.30°D.90°在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0°,90°],解题时经常结合这一点去求异面直线所成的角的大小.作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).4.2空间图形的公理(二)答案知识梳理1.平行2.平行相等互补3.锐角(或直角)直角(0°,90°]作业设计1.D[异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.]2.D3.D[等角定理的实质是角的平移,其逆命题不一定成立,OB与O1B1有可能平行,也可能不在同一平面内,位置关系不确定.]4.B[①④均为假命题.①可举反例,如a、b、c三线两两垂直.④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.]5.D[如图所示,取BC的中点E,连接ME、NE,则ME=AC,NE=BD,所以ME+NE=(AC+BD).在△MNE中,有ME+NE>MN,所以MN<(AC+BD).]6.60°或120°7.(1)60°(2)45°解析连接BA′,则BA′∥CD′,连接A′C′,则∠A′BC′就是BC′与CD′所成的角.由△A′BC′为正三角形,知∠A′BC′=60°,由AD∥BC,知AD与BC′所成的角就是∠C′BC.易知∠C′BC=45°.8.①③解析把正方体平面展开...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 1.4.2.2 空间图形的公理(二)课时作业 北师大版必修2

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部