2.1向量的概念及表示课时目标1.掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.1.向量的概念(1)向量:既有大小又有________的量叫做向量,如速度、位移、力等.(2)数量:只有大小,没有方向的量称为数量,如面积、体积、质量等.注意数量可以比较大小,而向量无法比较大小.2.向量的几何表示(1)有向线段:带有方向的线段叫做有向线段,其方向是由起点指向终点,以A为起点、B为终点的有向线段记作________.有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向、长度,它的终点就惟一确定.(2)向量的有关概念:向量AB的________称为向量AB的长度(或称为模),记作|AB|.长度为________的向量叫做零向量,记作0.长度等于________个单位长度的向量,叫做单位向量.3.平行向量:方向________或________的非零向量叫做平行向量.向量a与b平行,通常记为a∥b.规定零向量与任何向量都________,即对于任意向量a,都有0∥a.4.相等向量与共线向量(1)相等向量:________相等且方向相同的向量叫做相等向量.向量a与b相等,通常记为a=b.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.在平面上,两个长度相等且指向一致的有向线段表示同一个向量.(2)共线向量:任意一组平行向量都可以移动到同一________上,因此,平行向量也叫共线向量.5.相反向量我们把与向量a长度相等,方向相反的向量叫做a的________________,记作________,a与-a互为________________,并且规定零向量的相反向量仍是____________.于是,对任一向量a有____________.一、填空题1.下列命题中正确的个数为______.①向量a与向量b平行,则a、b方向相同或相反;②若向量AB、CD满足|AB|>|CD|,且AB与CD同向,则AB>CD;③若|a|=|b|,则a,b的长度相等且方向相同或相反;④由于0方向不确定,故0不能与任何向量平行;⑤若向量a与向量b方向相反,则a与b是相反向量.2.下列结论中,正确的是________.(填序号)①向量AB,CD共线与向量AB∥CD同义;②若向量AB∥CD,则向量AB与DC共线;③若向量AB=CD,则向量BA=DC;④只要向量a,b满足|a|=|b|,就有a=b.3.在四边形ABCD中,AB=DC且|AB|=|AD|,则四边形的形状为________.4.下列说法正确的有________.(填序号)①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.5.下列四个命题①若|a|=0,则a=0;②若|a|=|b|,则a=b,或a=-b;③若a∥b,则|a|=|b|;④若a=0,则-a=0.其中正确命题的个数是________.6.给出以下5个条件:①a=b;②|a|=|b|;③a与b的方向相反;④|a|=0或|b|=0;⑤a与b都是单位向量.其中能使a∥b成立的是________.(填写序号)7.下列命题正确的是________.(填写正确命题的序号)①向量的模一定是正数;②起点不同,但方向相同且模相等的几个向量是相等向量;③向量AB与CD是共线向量,则A、B、C、D四点必在同一直线上.8.下列命题正确的是________.(填写正确命题的序号)①a与b共线,b与c共线,则a与c也共线;②任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点;③向量a与b不共线,则a与b都是非零向量;④有相同起点的两个非零向量不平行.9.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.10.如图所示,E、F分别为△ABC边AB、AC的中点,则与向量EF共线的向量有________________(将图中符合条件的向量全写出来).二、解答题11.在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为终点画一个向量b,使b=a;(2)在图中画一个以A为起点的向量c,使|c|=,并说出向量c的终点的轨迹是什么?12.如图所示,△ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点.(1)写出与EF共线的向量;(2)写出与EF的模大小相等的向量;(3)写出与EF相等的向量.能...