电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元二次方程归纳总结VIP免费

一元二次方程归纳总结_第1页
1/10
一元二次方程归纳总结_第2页
2/10
一元二次方程归纳总结_第3页
3/10
一元二次方程归纳总结1、一元二次方程的一般式:20(0)axbxca,a为二次项系数,b为一次项系数,c为常数项。2、一元二次方程的解法(1)直接开平方法(也可以使用因式分解法)①2(0)xaa解为:xa②2()(0)xabb解为:xab③2()(0)axbcc解为:axbc④22()()()axbcxdac解为:()axbcxd(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20(0)axbxca,用配方法将其变形为:2224()24bbacxaa①当240bac时,右端是正数.因此,方程有两个不相等的实根:21,242bbacxa②当240bac时,右端是零.因此,方程有两个相等的实根:1,22bxa③当240bac时,右端是负数.因此,方程没有实根。注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20(0)axbxca,并确定出a、b、c②求出24bac,并判断方程解的情况。③代公式:21,242bbacxa(要注意符号)3、一元二次方程的根与系数的关系法1:一元二次方程20(0)axbxca的两个根为:221244,22bbacbbacxxaa所以:22124422bbacbbacbxxaaa,22222122244()(4)422(2)4bbacbbacbbacaccxxaaaaa定理:如果一元二次方程20(0)axbxca定的两个根为12,xx,那么:1212,bcxxxxaa法2:如果一元二次方程20(0)axbxca定的两个根为12,xx;那么2120()()0axbxcaxxxx两边同时除于a,展开后可得:2212120()0bcxxxxxxxxaag12bxxa;12cxxa?法3:如果一元二次方程20(0)axbxca定的两个根为12,xx;那么21122200axbxcaxbxcLL①②得:12bxxa(余下略)常用变形:222121212()2xxxxxx,12121211xxxxxx,22121212()()4xxxxxx,2121212||()4xxxxxx,2212121212()xxxxxxxx,22111212121222212()4xxxxxxxxxxxxxx等练习:【练习1】若12,xx是方程2220070xx的两个根,试求下列各式的值:(1)2212xx;(2)1211xx;(3)12(5)(5)xx;(4)12||xx.【练习2】已知关于x的方程221(1)104xkxk,根据下列条件,分别求出k的值.(1)方程两实根的积为5;(2)方程的两实根12,xx满足12||xx.【练习3】已知12,xx是一元二次方程24410kxkxk的两个实数根.(1)是否存在实数k,使12123(2)(2)2xxxx成立?若存在,求出k的值;若不存在,请您说明理由.(2)求使12212xxxx的值为整数的实数k的整数值.4、应用题(1)平均增长率的问题:(1)naxb其中:a为基数,x为增长率,n表示连续增长的次数,①②b表示增长后的数量。(2)面积问题:注意平移思想的使用5、换元法例:222()5()60xxxx解:令2yxx则原方程可化为:2560yy解得:12y23y①当22xx时,求得:121,2xx②当23xx时,求得:3,41132x(原方程共有4个解)练习:221211xxxx一元二次方程的解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:mxmmx,02※※对于max2,22nbxmax等形式均适用直接开方法典型例题:例1、解方程:;08212x216252x=0;;09132x例2、解关于x的方程:02bax例3、若2221619xx,则x的值为。针对练习:下列方程无解的是()A.12322xxB.022xC.xx132D.092x类型二、因式分解法:021xxxx21,xxxx或※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如22nbxmax,cxaxbxax,0222aaxx典型例题:例1、3532xxx的根为()A25xB3xC3,2521xxD52x例2、若044342yxyx,则4x+y的值为。例3、方程062xx的解为()A.2321,xxB.2321,xxC.3321,xxD.2221,xx例4、解方程:04321322xx例5、已知023222yxyx,则yxyx的值为。类型三、配方法002acbxax222442aacbabx※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、试用配方法说明322xx的值恒大于0。例2、已知x、y为实数,求代数式74222yxyx的最小值。例3、已知,x、yyxyx0136422为实数,求yx的值。例4、分解因式:31242xx类型四、公式法⑴条件:04,02acba且⑵公式:aacbbx242,04,02acba且典型例题:例1、选择适当方法解下列方程:⑴.6132x⑵.863xx⑶0142xx⑷01432xx⑸5211313xxxx说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式法;一般不选择配方法。说明...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元二次方程归纳总结

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部